
Architectural design of
modular ESB systems

Clermond de Hullu

February, 2013

Department of Computer Science

Chair Software Engineering

Supervisors

Dr. Luís Ferreira Pires

Dr. Ing. Christoph Bockisch

Academic Year

2012/2013

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Approach . 2

1.4 Thesis Outline . 3

2 PCC Architecture 4

2.1 Enterprise Service Bus . 4

2.2 PCC High-Level Description . 5

2.3 PCC Programs . 6

2.4 Messaging Infrastructure Limitations 8

2.5 Security Limitations . 9

2.6 Architectural Limitations . 10

3 Requirements 12

3.1 Stakeholders . 12

3.2 Approach . 14

3.3 Mandatory Requirements . 15

4 High-Level Design 20

4.1 Architectural Principles . 20

4.2 High-level Components . 22

4.3 Runtime Engine . 23

4.4 Publish-Subscribe Engine . 26

4.5 Adapter Framework . 27

4.6 Workflow Framework . 28

4.7 Security . 30

5 Architectural Design 31

5.1 Topic Domain Model . 31

5.2 Message Logging . 34

5.3 Retry Mechanism . 36

5.4 Request-Response Messaging . 36

5.5 Chaining . 37

5.6 Message Box . 39

5.7 Queues . 40

5.8 Security . 41

5.9 Example Message Flow . 42

6 Prototype Implementation 45

6.1 Implementation Technologies . 45

6.2 Service Host Factory . 47

6.3 Management Application . 49

6.4 Adapter Framework . 50

6.5 Workflow Framework . 52

6.6 Limitations . 54

7 Case Implementation 56

7.1 Integration Scenario . 56

7.2 Overview . 57

7.3 Chamber of Commerce Connector Adapter 60

7.4 HTTP Post Adapter . 65

7.5 Route Workflow . 66

7.6 Message Flow . 68

8 Case Configuration 72

8.1 Adapters . 73

8.2 Workflows . 74

8.3 Topics . 75

8.4 External Entities . 79

8.5 Logged Messages . 81

8.6 Adapter Approach Configuration . 84

9 Architecture Evaluation 86

9.1 Case Evaluation . 86

9.2 Requirements Evaluation . 95

10 Final Remarks 101

10.1 Related Work . 101

10.2 General Conclusions . 102

10.3 PCC Update . 104

10.4 Future Work . 104

A Appendix 106

A.1 Optional Requirements . 106

A.2 Message Flow . 109

Bibliography 110

Chapter 1

Introduction

1.1 Motivation

Executives across all industries are demanding more value from their strategic

business processes. An important aspect that helps improve the value of those

business processes is the ability to flexibly and rapidly create and change them.

To do this, it is important that different software applications that support these

processes are able to communicate with each other. However, not all software ap-

plications are built with interoperability in mind. So, allowing all those different

applications to interoperate can be both time-consuming and costly due to different

transmission protocols and data exchange formats.

The last few years have seen some significant technology trends to solve this

problem, such as Service-Oriented Architecture (SOA), Enterprise Application In-

tegration (EAI), Business-to-Business (B2B), and Web services. These technologies

have attempted to address the challenges of improving the results and increasing

the value of integrated business processes [1].

SOA is the current state-of-the-art in IT application architecture, and addresses

the challenges of increasing the value of integrated business processes. It does not

prescribe any specific technology for its implementation and can be implemented

using Web services, an Enterprise Service Bus (ESB), an application server platform

or other middleware. The ESB draws the best traits from these and other technol-

ogy trends [1].

An ESB is an integration infrastructure to facilitate SOA that can be used to con-

nect and coordinate the interaction of a significant number of diverse applications.

Commercially available ESBs provide support for many additional capabilities and

can be used to solve a wide range of complex integration scenarios.

Our previous research [2] has shown that commercially available ESBs can be

a suitable choice for large companies, but these solutions may be too expensive or

too complex, and can introduce too much overhead for smaller companies.

1

In this research we used CompanyX as an example of a company for which the

commercially available ESBs are not a suitable choice, and because of that is using

a custom-built ESB solution called the Prodigy Communication Center (PCC) to

communicate with third-party services.

The PCC needs to be improved because it is not flexible enough and some other

weaknesses are the poor performance, the lack of log information and there is also

a need for additional functionality.

1.2 Objectives

The main objectives of this Master project have been:

1. To identify the architectural principles for developing ESB systems with strin-

gent flexibility and quality requirements.

2. To define an architecture for a custom ESB system and evaluate the architec-

ture by means of a prototype.

1.3 Approach

The approach we took consists of the following steps:

• Analysis of a typical ESB architecture.

We analyzed the architecture of the PCC and identified its limitations.

• Requirements analysis.

We identified and interviewed the stakeholders of an ESB system and used

the identified limitations to capture the requirements of our project.

• Architectural design.

We designed a new architecture to fulfil the identified requirements.

• Prototype implementation.

We implemented the functionality of the designed architecture in a proto-

type.

• Case study.

We carried out a case study to test, demonstrate and evaluate the functional-

ity of our prototype.

2

• Prototype evaluation.

Finally, we evaluated the prototype by checking its fulfillment of the require-

ments.

1.4 Thesis Outline

The outline of the remainder of our thesis is as follows:

Chapter 2 analyzes the architecture of the PCC and identifies its limitations, which

we have used to set up the requirements of our new system.

Chapter 3 defines and explains the requirements of our new system.

Chapter 4 presents our high-level design, and explains the architectural principles

for developing ESB systems, as well as the components of our architecture that pro-

mote these principles.

Chapter 5 refines our high-level design by describing the high-level components

in more detail.

Chapter 6 describes the implementation of our prototype.

Chapter 7 describes our case study and the implementation of the plug-ins that we

have developed for our prototype to provide a solution for the integration scenario

of our case study.

Chapter 8 demonstrates the management environment we designed to be able to

configure our ESB using the implemented plug-ins to provide a solution for the

integration scenario of our case study.

Chapter 9 evaluates our system by analyzing the results of our case study, and by

verifying the fulfilment of the requirements.

Chapter 10 summarises our conclusions and gives directions for future work.

3

Chapter 2

PCC Architecture
This chapter analyzes the architecture of the PCC and identifies its limitations. We

identify these limitations by analyzing the PCC source code, reading the available

documentation and interviewing the PCC developers. We use the identified limi-

tations to set up the requirements of our project.

This chapter describes the PCC and its components without describing a spe-

cific integration scenario because the way the PCC processes messages is the same

for all integration scenarios.

This chapter is structured as follows:

Section 2.1 provides general background information about ESBs.

Section 2.2 provides a high-level description of the PCC.

Section 2.3 discusses the PCC components.

Section 2.4 explains the messaging infrastructure’s limitations.

Section 2.5 describes the security limitations.

Section 2.6 describes the architectural limitations.

2.1 Enterprise Service Bus

The term ESB was first used by Sonic in 2002 [3] to refer to their SonixXQ product,

which was an XML-enabled Message-Oriented Middleware (MOM) that was later

re-branded as Sonic ESB. A few months later, Gartner called ESB a strategic invest-

ment and then soon many systems from integration servers to messaging products

were re-branded as ESBs.

Existing literature [3] [4] [5] [6] proposes multiple definitions for an ESB, but in

our research we define it as an integration infrastructure that is used to facilitate

SOA.

An ESB combines service hosting, message transformation, protocol bridging

and intelligent routing to connect and coordinate the interaction of a significant

number of diverse applications [1].

4

Figure 2.1: ESB Bus Architecture

This is done by overcoming differences in applications through mediation by

allowing the applications to communicate over a bus-like infrastructure (as shown

in Figure 2.1). ESB products support developers to build SOAs, but vary strongly

in their operations and capabilities. More information about ESBs and their capa-

bilities can be found in our previous research [2], which provides an ESB capability

model that categorizes the ESB’s capabilities.

2.2 PCC High-Level Description

The PCC is a custom ESB solution that was built to allow many different systems to

communicate with third-party services in a standardized way, without these sys-

tems having to concern themselves with tasks such as message processing and mes-

sage routing.

Figure 2.2 provides a context diagram depicting the high-level components that

communicate with the PCC:

Prodigy
Communication

Center

Third-Party
Services

2Client
1

3

Figure 2.2: PCC Context Diagram

• Client. A system that uses the PCC to communicate with a third-party ser-

vice.

5

• Third-Party Service. A service that provides functionality that is needed by

a client.

• Prodiy Communication Center. A set of programs without a graphical user

interface that facilitates the communication between clients and third-party

services.

2.2.1 Message Flow

The message flow between the high-level components depicted in Figure 2.2 is as

follows:

1. A client sends a message intended for a third party-service to the PCC. When

the PCC receives the message it sends a synchronous response back to the

client indicating if the PCC accepted the message, but this message does not

contain the actual reply message from the third-party service.

2. Next, the PCC routes the received message to the correct third-party service

and receives a synchronous reply message.

3. Finally, the PCC processes the reply message and routes it to the client that

sent the original request message. For this to work, all clients have to host a

Web service that accepts incoming SOAP messages from the PCC.

2.3 PCC Programs

The PCC has a decentralized architecture that consists of six different programs

depicted in Figure 2.3 that have to be installed separately. Except for the Message

Queue, they are all programs that host their own SOAP Web services to communi-

cate with the other components.

Description of the PCC programs:

• Incoming Frontend. Hosts a SOAP Web service that all clients have to use to

communicate with the PCC. This Web service provides a method that accepts

messages containing the content that has to be sent to a third-party service.

• Incoming Message Handler. Receives messages from the Incoming Frontend

and stores them in the inbox of the message queue.

6

Incoming
 Frontend

Incoming
Message
Handler

Outgoing
Message
Handler

Outgoing
 Frontend

Client

PCC

A component depicted with this icon uses the system’s database.
LEGEND

A B Component A initiates a two-way connection with component B.

Message
Logger

Outbox
Queue

Third-Party
Service

Inbox
Queue

Message
Accoutning

Queue

Message
Queue

Message
Processing

Dead-Letter
Queue

Figure 2.3: PCC Architecture

• Message Queue. A message queue implementation developed by Microsoft

is used as the internal queue mechanism to prevent message loss when the

PCC goes offline and it acts as a buffer that allows the PCC to accept mes-

sages faster than they can be processed. This is done by storing all incoming

messages in the queue until they have been processed. The PCC uses a mes-

sage queue, because it is faster than using the database.

• Message Processing. Reads messages from the inbox of the message queue,

transforms the messages and finally adds routing information to the mes-

sages. If the processing of a message was successful it stores the message in

the outbox of the message queue, if any errors occurred the message is stored

in the dead-letter queue.

• Outgoing Message Handler. Reads the processed messages from the outbox

of the message queue and sends them to the Outgoing Frontend.

• Outgoing Frontend. Sends the messages received from the Outgoing Mes-

sage Handler to third-party services that communicate using HTTPS. It does

this based on the routing information the Message Processing service added

to the message. In addition, it also calls the SOAP Web service of the clients

to deliver the actual reply messages from the third-party services.

• Message Logger. Stores log messages in the message accounting queue and

then asynchronously reads those messages from the queue to store them in

the database for persistence.

A more detailed explanation of the message flow can be found in Appendix A.2.

7

2.4 Messaging Infrastructure Limitations

This section discusses the limitations that we have identified related to the PCC

messaging infrastructure.

L1: Not possible to host and communicate with additional endpoints.

It is not possible to host new endpoints that clients can use to communicate with

the PCC without modifying its source code. This means that clients always have

to call the Web service that is hosted by the Incoming Frontend (step 1 in Figure

2.2), and an even bigger restriction is that clients always have to host a SOAP Web

service that accepts the reply messages from the PCC (step 3 in Figure 2.2). These

are very strong restrictions that are imposed on all systems that need to be a client

of the PCC.

For existing systems it is not always possible to adhere to these requirements,

which prevents these systems from communicating with the PCC.

An example of this problem is when users store files on a FTP server, and the

content of these files needs to be routed to a third-party service. Because a FTP

server can not make SOAP requests and does not host a SOAP Web service to re-

ceive the reply messages it can never directly communicate with the PCC. So, to

cope with this problem the PCC has to be able to host additional endpoints, which

can use their own message format, MEP, communication protocol and endpoint ad-

dress.

L2: Only support for a single communication protocol to communicate with

third-party services.

The PCC is not capable of communicating with third-party services that use an-

other communication protocol than HTTPS (step 2 in Figure 2.2). However, there

are many third-party services that use another communication protocol. So, the

PCC is strongly restricted since it can not communicate with these third-party ser-

vices without having to modify its source code to implement the required commu-

nication capabilities.

8

L3: Customers have to open ports in their firewall.

When the PCC has successfully routed a message to a third-party service it needs

to send the reply back to the client that sent the original message. To do this, it

initiates a new connection with the client and sends the reply message (step 3 in

Figure 2.2).

However, this causes many problems with the security policies of the customers

running a client because they can only receive the reply message if they have

opened inbound ports in their firewalls, which is often not allowed by their se-

curity policies.

L4: Clients are not notified if processing errors occur.

If the PCC accepted a message, but failed to process it, the client is never notified.

Instead of only storing the message in the dead-letter queue, the client must

also be notified that an error occurred so that it can take necessary actions.

2.5 Security Limitations

This section discusses the security limitations that we have identified.

L5: General certificate for all reply connections.

A client must have the following three certificates installed for the encryption of

the Web service calls and for the mutual authentication between the customers

running a client and the PCC:

1. PCC Certificate. Allows a client to authenticate the PCC for the connection

from a client to the Incoming Frontend.

2. Client Certificate. A unique client specific certificate, which allows the PCC

to authenticate a specific client.

3. Reply Certificate. Allows the PCC to authenticate a client (but not a specific

client) for the connection from the Outgoing Frontend to a client.

The reply certificate is a security vulnerability because it allows clients to de-

crypt reply messages that are addressed to another client. This is possible because

the reply certificate is the same for all clients that use the PCC. This security lim-

itation can be avoided by reusing the client certificate for the reply connection.

This also simplifies the installation of a client because this reduces the number of

9

required certificates to two.

L6: No authorization for different message types.

Using the previously discussed certificates all clients are authenticated and the

communication with the Web services is encrypted, but there is no form of au-

thorization. Once a client can establish a connection with the PCC it can send and

receive all messages supported by the PCC.

2.6 Architectural Limitations

We have identified the following architectural limitations:

L7: Unexploited decentralized architecture.

The PCC has a decentralized architecture that consists of the six programs that are

discussed in Section 2.3. However, CompanyX does not take advantage of the ben-

efits of having a decentralized architecture, but does encounter the disadvantages.

For example, the six different programs need to be installed and configured

separately using error-prone XML-based configuration files, but during the entire

time that the PCC was being used not a single program was ever updated indepen-

dently, all programs always ran on the same server and the programs are all very

specific to the PCC, which prevents them from being reused.

So, because the architecture is very decentralized it requires more installation

effort, it is harder to maintain and manage, and extending the PCC with a central-

ized location for management would provide a lot of overhead.

That is why a more centralized architecture would be more beneficial for Com-

panyX.

L8: Message routing rules can not be updated at runtime.

Message routing is done by the Message Processing program, and the criteria to

identify a message type is hardcoded in its source code. The destinations of the

different message types is stored in the database.

To modify the destination of an existing message type the destination address

has to be changed directly in the database.

To add a new message type the following steps have to be taken: (1) the Message

Processing program has to be stopped, (2) the code has to be modified, (3) changes

have to be made in the database, and (4) the program has to be started again. This

10

update disrupts the operation of all applications that are using the PCC.

L9: Message processing code can not be updated at runtime.

Message processing is also done by the Message Processing program. Modifying

the message processing logic also requires its source code to be changed, which

disrupts the operation of all applications that are using the PCC.

L10: Not possible to provide detailed and timely log information.

When using the PCC, looking for solutions to problems is very difficult and time

consuming because the PCC does not provide detailed up-to-date log information

on messages and their relations, and it is not possible to inspect which messages

were sent by the specific external entities.

A cause of these problems is that the PCC logs all messages asynchronously. The

advantage of this approach is that the message logging causes a negligible delay in

the message processing, but the disadvantage is that there is not always up-to-date

log information in the database. Because the PCC processes the log messages asyn-

chronously with multiple threads, the order in which the log messages are received

is lost, which prevents the PCC from logging the relations between the different log

messages.

L11: No management application to manage the system.

A management application would reduce the installation effort, and make it easier

for managers to maintain and manage the PCC.

11

Chapter 3

Requirements
This chapter describes the mandatory requirements of our custom ESB system,

which is called the Prodigy Communication Center version 2 (PCC2).

The main purpose of the PCC2 is to reduce the time and cost of integrating

third-party services by simplifying the development of applications that need to

communicate with these third-party services.

This chapter is structured as follows:

Section 3.1 lists the stakeholders of the PCC2.

Section 3.2 describes our approach to gather the requirements.

Section 3.3 describes the mandatory requirements.

3.1 Stakeholders

The following stakeholders are relevant for the PCC2:

• Developers are the expert users that develop plugins for the PCC2, which

allows the the PCC2 to communicate with additional clients and third-party

services.

• Service desk employees install, configure, monitor and troubleshoot the PCC2.

• Customers indirectly communicate with the PCC2 via the client they use to

communicate with a third-party service via the PCC2. They rely on the PCC2

to correctly process their messages and generate a reply for these messages.

• Consultants install and configure the clients for customers that communicate

with the PCC2. So, they rely on the error messages and log information that

the PCC2 provides to troubleshoot an installation.

• Third-parties provide services that rely on the PCC2 to retrieve or provide

information.

By analyzing these stakeholders and their interests we identified that the PCC2

has the following three aspects that are of interest to the stakeholder:

12

1. Management Application. A program with a graphical user interface that

can be used to manage the runtime engine.

2. Runtime Engine. The core of the ESB that communicates with third-party

services, and performs task such as message routing and message processing.

3. Development Tools. A set of development tools that make it possible to ex-

tend the runtime engine’s capabilities to communicate with additional third-

party services.

Based on this observation we have identified the following three levels on which

the stakeholders interact with the PCC2:

1. Management Level. Stakeholders that interact with the PCC2 on the Man-

agement level only communicate with the management application to re-

trieve and/or update information and settings.

2. Operational Level. Stakeholders on the Operational level only interact with

the runtime engine by sending and receiving messages, but they are not al-

lowed to use the management application.

3. Development Level. Stakeholders on the Development level do not directly

communicate with PCC2, but they only make use the development tools.

For the purpose of this research it is enough to divide the stakeholders into the

following three categories:

1. Managers: Service desk employees and consultants are managers and inter-

act with the PCC2 on the Management level. Their main interest is to have a

management application that provides all functionality they need to simply

configure, monitor and troubleshoot the runtime engine.

2. External Entities: Customers and third-parties are external entities and in-

teract with the PCC2 on the Operational level. Their main interest is to have

the ability for their system to communicate with the runtime engine, so that

it can correctly processes their messages to retrieve or provide information.

3. Developers: Developers interact with the PCC2 on the Development level.

Their main interest is that the runtime engine provides tools that allow them

to extend the runtime engine’s ability to communicate with additional exter-

nal entities with as little effort as possible.

13

Figure 3.1 depicts the interaction between the identified stakeholder categories

and the PCC2.

PCC2

Developers

Managers

External
Entities

Management Application
(Management Level)

Runtime Engine
(Operational Level)

Development Tools
(Development Level)

Figure 3.1: Stakeholder Categories

3.2 Approach

To specify the requirements of our project we interviewed the people that were

identified by our project supervisor. We started by interviewing the PCC develop-

ers because they have the most knowledge of the usage, the features and limitations

of the PCC. Next, we interviewed consultants and service desk employees because

they use the PCC daily.

The first round of interviews were informal, and the main goal was to ask the

stakeholders about their experience with the PCC, and if they had any thoughts or

ideas that we had to consider when designing the PCC2. This allowed us to identify

the main interests of the different stakeholders.

Based on these interviews we noticed that the consultants and service desk em-

ployees had the most interest in adding additional features, such as a graphical

user interface to manage and monitor the PCC.

The developers were more interested in improving the PCC architecture to in-

crease its flexibility of integrating new third-party services without disrupting the

already running applications.

Based on the first round of interviews and the analysis of the PCC, we decided

in consultation with our project supervisor that developing a new system with an

14

improved architecture was more beneficial than adding additional features to the

PCC.

Because of this decision we identified the developers as the main stakeholders

of our project. To specify the requirements we performed a second round of in-

terviews during which we re-interviewed the developers. This time we discussed

the identified limitations of the PCC and determined the priorities for addressing

them in the PCC2.

Based on the results of the interviews we compiled a lists of mandatory and

optional requirements. The mandatory requirements address all limitations, ex-

cept for L6 (no authorisation). This limitation is addressed by an optional require-

ment(R12), because this has to make use of an external licensing system that is still

under development.

Verification of the fulfilment of the identified mandatory requirements took

place by using the requirements as the evaluation criteria for the evaluation of our

prototype.

3.3 Mandatory Requirements

This section describes the mandatory requirements of the PCC2. For readability

we refer to the PCC2 as "the system" in the requirement descriptions.

Appendix A.1 describes the optional requirements that we have taken into ac-

count while designing the PPC2.

All requirements are specified in the following parts:

1. A short description which is used to refer to any requirement. The short

description is prefixed with the letter "R" or "OR", which indicates if it is a

mandatory or optional requirement.

2. The most important stakeholders of the requirement

3. The limitations that the requirements addresses.

4. Detailed description with additional information about the requirement.

Because the PCC2 must be capable of performing all the tasks the PCC per-

forms, this chapter only describe the requirements that address the PCC limita-

tions. The requirements are grouped according to the three identified levels on

which the stakeholders communicate with the PCC, and are discussed in the fol-

lowing sections.

15

3.3.1 Development Level Requirements

The mandatory requirements for the interaction with the PCC2 on the Develop-

ment level are:

R1: The system has to provide a mechanism to host and communicate with ad-

ditional endpoints without disrupting the already running applications.

� Stakeholders: Developers, External Entities.

. Addresses: L1: Not possible to host and communicate with additional endpoints.

. Addresses: L2: Only support for a single communication protocol to communicate with

third-party services.

This mechanism has to allow developers to develop and deploy reusable compo-

nents that can be used to host or communicate with additional endpoints without

disrupting the connections with the endpoints that are already operational.

Because endpoints can have different characteristics, this mechanism must be

able to support a different MEP, communication protocol and message format for

each endpoint that has to be interacted with.

R2: The system has to provide a flexible mechanism to perform message process-

ing.

� Stakeholders: Developers.

. Addresses: L9: Message processing code can not be updated at runtime.

This mechanism has to allow developers to develop and deploy reusable compo-

nents that can be used to implement custom business logic or perform message

processing. The message processing options have to include:

• Performing XSD-Schema validations.

• Calling Web services or databases to find additional information to be added

to the message.

• Applying XSLT transformations to transform the messages.

The developers should be able to update the message processing behaviour at

runtime without modifying the system’s source code or disrupting already running

applications.

16

3.3.2 Operational Level Requirements

The mandatory requirements for the interaction with the PCC2 on the Operational

level are:

R3: The system has to provide a mechanism to support asynchronous communi-

cation without external entities having to open inbound ports in their firewalls.

� Stakeholders: External Entities.

. Addresses: L3: Customers have to open ports in their firewall.

. Addresses: L4: Clients are not notified if processing errors occur.

. Addresses: L5: General certificate for all reply connections.

The system must provide a mechanism that allows external entities to communi-

cate with the system without having to open any inbound ports in their firewalls,

even if the system can not synchronously send the response. This mechanism must

not use the reply certificate discussed in Section 2.5 to reduce potential security

risks, and senders of messages must be able to verify that their messages have been

processed successfully.

3.3.3 Management Level Requirements

The mandatory requirements for the interaction with the PCC2 on the Manage-

ment level are:

R4: The system has to provide a flexible mechanism to perform message routing.

� Stakeholders: Managers.

. Addresses: L8: Message routing rules can not be updated at runtime.

The system has to be able to route messages using the following two approaches:

• Itinerary-based routing. The system must allow managers to use the man-

agement application to specify message itineraries that the system can use to

route messages to their recipients.

• Content-based routing. The system has to be able to route messages based

on the content of the messages.

The routing rules of both mechanisms have to be editable at runtime without

modifying the system’s source code, and without disrupting running applications.

17

R5: The system must only accept incoming messages from predefined external

entities.

� Stakeholders: Managers.

The system must provide a mechanism that allows managers to specify the exter-

nal entities that are allowed to communicate with the system, and only messages

from those external entities must be accepted.

R6: The system has to be able to temporarily reject incoming messages.

� Stakeholders: Managers.

A manager has to be able to use the management application to indicate that the

system must temporarily reject all messages.

R7: The system has to provide a configurable retry mechanism.

� Stakeholders: Managers.

The messaging infrastructure has to provide a configurable retry mechanism which

allows managers to use the management application to specify:

• The amount of times a message has to be re-sent to an endpoint.

• The time the system has to wait after a failed sent attempt.

• The maximum time the system can take to process a message before it is

discarded.

R8: The system has to be able to display detailed log information.

� Stakeholders: Managers.

. Addresses: L10: Not possible to provide detailed and timely log information.

The system has to log the complete flow of messages through the system and allow

managers to view this flow by using the management application.

This flow should include:

• The name of the external entity that sent a message.

• At what time a message was sent to a recipient and the reply that was received

for the message.

• Which errors, if any, occurred during the processing of a message.

• The final reply message that was generated by the system.

18

This makes it possible to view the flow of messages through the system and allow

managers to see what exactly has happened in case something went wrong. This

information also makes it possible to provide statistics and usage information.

19

Chapter 4

High-Level Design
This chapter presents our high-level design of the PCC2, and it describes the ar-

chitectural principles for developing ESB systems together with the components of

the PCC2 that promote these principles.

This chapter is structured as follows:

Section 4.1 discusses the two most important architectural principles for develop-

ing ESB systems.

Section 4.2 provides a high-level overview of our architecture.

Section 4.3 describes the high-level components in more detail.

Section 4.4 describes the publish-subscribe engine.

Section 4.5 discusses the adapter framework.

Section 4.6 explains the message processing capabilities of the PCC2.

Section 4.7 deals with security.

4.1 Architectural Principles

We have identified the architectural principles for developing ESB systems by an-

alyzing the architectures and documentation of the existing ESB systems that we

have discussed in our previous research [7] [8] [9] [10] [11] [12] [13] [14].

The documentation of Neudistic’s Neuron ESB [15] [16] [17] and Microsoft’s

BizTalk Server [18] [19] [20] [21], which are the two state-of-the-art commercially

available .NET-based ESB solutions, provided the most detailed and extensive in-

formation about ESB architectures.

Based on our analysis we concluded that providing mediation and a flexible

messaging infrastructure are the two most important architectural principles for

developing a custom ESB system. These two principles are discussed in the next

two sections.

Our high-level design covers the remaining architectural principles together

with the components of the PCC2 that promote these principles.

20

4.1.1 Flexible Messaging Infrastructure

Enterprise developers, traditionally, write applications that include both business

logic and communication logic. In the past, developers of communication logic

made assumptions about from which systems information came and also to which

systems information should be sent. The problem with that model is that it requires

the developer to have an enterprise-level view of how systems interconnect, and

that understanding is then embedded into the code. If the connections change, the

application has to change as well.

ESBs provide a publish-subscribe engine to take that burden off of the devel-

oper and make it a concern of the business analysts and the IT department. When

a publish-subscribe engine is used, the routing of messages is determined by a cen-

tralized component, which allows the routing to be changed at any time, without

requiring any changes to application software.

Publish-subscribe is a messaging pattern in which senders of messages, called

publishers, do not program the messages to be sent directly to specific receivers,

called subscribers. Instead, published messages are put into classes without know-

ing if there are any or how many subscribers are interested in these messages, and

subscribers only receive a subset of the total number of messages which are pub-

lished, the subset in which they are interested.

Filtering is the process of selecting messages for reception and processing. There

are two common forms of filtering namely topic-based and content-based. In a

topic-based system, messages are published to "topics" or named logical channels.

Subscribers in a topic-based system receive all messages published to those partic-

ular topics to which they subscribe, and all subscribers to a specific topic receive

the same messages.

In a content-based system, messages are only delivered to a subscriber if the

attributes or content of those messages match the constraints defined by the sub-

scriber.

4.1.2 Mediation

In order to make flexible messaging possible, the ESB has to mediate the commu-

nication between all applications that need to communicate with each other.

There are multiple forms of mediation, which together help overcome differ-

ences in applications, and allow the different applications to communicate through

the ESB. An ESB has to bridge differences in protocols, message formats, security

21

models and communication semantics. It is much simpler to configure an ESB for

mediation than it is to make changes to the programs themselves.

Below we discuss the four different types of mediation that an ESB has to pro-

vide to allow different applications to communicate through the ESB.

1. Transformation converts messages into a format understood by the receiver,

and is the key tool for supporting message versioning. Transformation can

also be used to reconcile differences in messages to or from parties who may

have differing requirements about format and content.

2. Protocol mediation overcomes differences in a communication protocol to

for example connect a program that sends via queuing to a service that re-

ceives via HTTP. Differences in communication semantics may also need to

be mediated, as in connecting a program that expects a request-reply pattern

of communication with a program that performs one-way communication.

3. Security mediation handles differences in security models, as in the case of

an enterprise application that uses Windows integrated security conversing

with a service that uses X.509 certificates.

4. Time mediation handles differences in time. A sender may be transmitting

messages when some receivers are not currently available. Time mediation

can store messages until a receiver is available to receive them, even though

the sender and the receiver might be using non-durable protocols such as

HTTP. A characteristic component of an ESB to mediate differences in time is

a buffering component that usually is implemented as a message queue that

allows the ESB to cope with differing handling speeds.

4.2 High-level Components

An ESB has to promote configuration changes rather than program changes because

configuration changes are simpler, safer, and can be applied without disrupting the

running applications. To do this we designed the PCC2 with the two components

depicted in the context diagram in Figure 4.1. This context diagram depicts the

PCC2 high-level components and the stakeholders that communicate with them.

22

Runtime
Engine

External Entities

Management
Application

Managers

Figure 4.1: PCC2 Context Diagram

These components are:

• Runtime Engine. A program without a graphical user interface that exe-

cutes the tasks received from the management application and provides the

types of mediation discussed in Section 4.1.2 to allow different applications

to communicate over a bus-like infrastructure.

The runtime engine is discussed in more detail in Section 4.3.

• Management Application. A program with a graphical user interface that

managers can use to communicate with a runtime engine to make configura-

tion changes, monitor, and control the runtime engine with a single applica-

tion.

The management application’s interface and functionality is discussed in Chap-

ter 8.

4.3 Runtime Engine

One of the challenges we encountered when designing the runtime engine was to

allow it to flexibly communicate with many different endpoints, while still keep-

ing it doable to design and implement a prototype in the time frame of this project.

To do this we designed a custom adapter and workflow framework. These frame-

works allow the developers to extend the PCC2 to interact with new endpoints

without disrupting the communication with already operational endpoints using

techniques with which they are already familiar. This reduces the learning curve of

using the PCC2 and it prevents us from having to implement many different mech-

anisms to communicate with endpoints the PCC2 might need to communicate with

in the future.

Figure 4.2 depicts the runtime engine’s high-level components together with

examples of adapters and workflows that can be developed for the PCC2. The run-

time engine consists of the components depicted within the dashed line, which are

23

Web service

FTP Server

FTP
Adapter

SOAP
Web service

Adapter

Adapter
Manager

Custom
Adapter

Legacy

System

Send Mail
Workflow

Transform
Workflow

Workflow
Manager

Enhance
Workflow

Management
Application

Send Mail

DatabaseDatabase

Runtime Engine

FTP
Adapter

SOAP
Web service

Adapter

Adapter
Manager

Custom
Adapter

Send Mail
Workflow

Transform
Workflow

Workflow
Manager

Enhance
Workflow

Management Application Web Service

Publish-
Subscribe

Engine

Message Queue

Figure 4.2: High-Level Architecture

implemented as modular, replaceable, and extensible .NET classes. The runtime

engine communicates with a database, a message queue and the management ap-

plication.

Below we give a short description of the runtime engine’s high-level compo-

nents:

• Publish-subscribe engine. Provides a flexible messaging infrastructure that

can mediate differences in time and communication sematics, and provides a

central location to perform message routing which is fully configurable using

the management application.

The publish-subscribe engine is discussed in Section 4.4.

• Message Queue. Allows the publish-subscribe engine to store messages in a

message queue to cope with differing handling speeds and prevents message

loss when the runtime engine is unexpectedly restarted.

• Adapter Manager. Allows developers to develop and deploy adapters that

24

allow the runtime engine to host new endpoints or interacting with new end-

points without disrupting the communication with already operational end-

points, and provides security and communication protocol mediation.

The adapter framework is discussed in Section 4.5.

• Workflow Manager. Provides the framework to deploy and execute work-

flows that can be used to perform message processing or implement flexible

runtime updatable business processes without disrupting the already run-

ning adapters and workflows.

The workflow framework is discussed in Section 4.6.

• Management Application Web Service. A SOAP Web service that is hosted

by the runtime engine and provides all the functionality that is needed by the

management application to manage the runtime engine remotely.

The runtime engine isolates and decouples communicating parties (adapters

and workflows), allowing them to effectively exchange messages by simply pub-

lishing messages onto the bus, without regard to the type or number of consumers;

similarly, they may subscribe to specific topics, without regard to the source of the

messages. This frees the developers from spending time on messaging business

logic and allows them to concentrate on the specific business logic associated with

manipulating the message data.

Design Alternative

An alternative to implementing the runtime engine’s different components as .NET

classes is to implement them as different programs that communicate via SOAP

Web services. This provides a more decentralized architecture which increases

scalability. However, based on the usage of the PCC (L7: Unexploited decentralized

architecture) we have determined that for our project having a more centralized ar-

chitecture is more beneficial.

The additional overhead of a decentralized architecture is required for large

enterprise systems that need their components to be able to run on different servers

for scalability, but benefits do not outweigh the drawbacks for our project.

The centralized approach has the following advantages compared to the more

decentralized architecture:

25

• Performance improvement because the communication between components

that run in the same process have less overhead than communicating via Web

services.

• Less installation effort because there is only a single program that has to be

installed and configured.

• Quicker development because the communication between Web services takes

more development and test effort than communication between components

in the same process.

• Easier to maintain and less overhead to provide a centralized management

application that can monitor and control the runtime engine to promote con-

figuration changes rather than program changes.

4.4 Publish-Subscribe Engine

We chose to design a topic-based publish-subscribe engine because this makes it

possible to use the management application to configure the subscribers for each

topic based on the name of the topic. A topic can be something as simple as for

example ”Orders”. Publishers can label each message with this name and publish

the messages to that topic. This makes the configuration of the subscribers straight-

forward, and subscribers can still choose to ignore specific messages if the content

does not meet their requirements.

Topics Configuration

Each topic has its own configuration that the publish-subscribe engine uses to de-

termine how to publish messages to a specific topic. The default behaviour is that

the publish-subscribe engine publishes the same message to all subscribers of a

topic in the order in which a manager specified the subscribers.

To allow the runtime engine to prevent message loss, and communicate with

additional endpoints that use their own MEP, we made the publish-subscribe en-

gine more flexible by providing the following extensions:

• Request-Response Messaging. Provides support for synchronous request-

response messaging in addition to the default asynchronous publish-subscribe

messaging.

26

• Chaning. Provides functionality that alters the default publishing behaviour

by allowing publishers to manipulate messages while they are being pub-

lished, which makes it possible to use the output of a subscriber as the input

of the next subscriber.

• Message Box. Provides support for asynchronous messaging without exter-

nal entities having to open inbound ports in their firewalls.

• Queuing. Provides functionality that allows the runtime engine to cope with

differing handling speeds and prevent message loss when the runtime engine

is unexpectedly restarted.

The publish-subscribe engine and its specific features is covered in more detail

in Section 5.1.

Internal Message Format

We designed an internal message format to exchange data between all publishers

and subscribers. The publish-subscribe engine only communicates via this internal

message format, which makes it possible to communicate with all publishers and

subscribers using a standardized way.

An internal message is serializable to XML, and contains both data i.e., the

information that some other system, resource or person may be interested in, as

well as metadata.

An important benefit of adopting XML as the means for exchanging data be-

tween publishers and subscribers is the extensibility of XML, which allows por-

tions of a message to be modified or enhanced without affecting other portions of

the message.

In addition, techniques such as XSTL and XPath expressions can provide a cer-

tain degree of loose coupling between the publishers and subscribers.

4.5 Adapter Framework

It is not known at design-time which systems should communicate with an ESB, so

there may be systems that have to communicate with the ESB, but cannot yet be

supported.

To cope with this problem the PCC2 provides a flexible adapter framework that

allows developers to develop and deploy custom adapters that can be used to host

27

new endpoints or to interact with new endpoints. The adapter framework provides

this functionality without requiring the PCC2 source code to be changed and with-

out disrupting the connections with the endpoints that are already operational.

Adapters can be implemented by simply extending a base class that provides

functionality to communicate with the publish-subscribe engine. An adapter en-

capsulates the logic to communicate natively with a target endpoint and also pro-

vides the functionality to communicate with the publish-subscribe engine, so with

the adapter in place the publish-subscribe engine and the target endpoint can in-

teract. An adapter is capable of sending and receiving messages, resides on the

server, and runs as part of the runtime engine’s process.

Before an adapter can be used, it must first be registered. This allows the run-

time engine to check its configuration by verifying that all registered adapters are

still available, and this makes it possible to enforce security policies on the regis-

tered adapters.

Once registered, multiple instances of an adapter can be created using the man-

agement application. Adapters can declare properties, and for each adapter in-

stance it is possible to specify different values for the declared properties. This

makes it possible to create multiple instances of a registered adapter that behave

differently.

In addition, the PCC2 provides a Service Host Factory that adapter developers

can use to host a SOAP Web service that external entities can use to communicate

with an adapter with a single line of code.

The runtime engine contains an Adapter Manager (see Figure 4.3) that pro-

vides all the functionality that the publish-subscribe engine needs to interact with

adapters. The Adapter Manager dynamically loads all the developed adapters from

a directory on the file system and instantiates all adapter instances with the prop-

erties that a manager specified using the management application.

4.6 Workflow Framework

The PCC2 provides a framework that allows developers to implement visual work-

flows that can be deployed and executed by the runtime engine.

These workflows receive an internal message as parameter, and can be used to

perform many tasks such as service composition, message processing, executing

custom business logic, sending emails, or enhancing messages with routing infor-

mation.

28

External
Web service

External
Web service

FTP ServerFTP Server

FTP
Adapter

SOAP
Web service

Adapter

Adapter
Manager

Custom
Adapter

Publish
Subscribe

Engine

Legacy

System
Internal
Message

Figure 4.3: Adapters Manager

They can be updated at runtime without disrupting the already running adapters

and workflows, which makes them a flexible solution that provides a wide range of

capabilities.

Because the adapters create internal messages, the workflows only have to deal

with the internal message format, and they do not need to be aware of endpoint

specific-properties, such as the communication protocol of an endpoint.

However, they may need to transform the content of messages because the

structure of the received message is not in the expected format, additional informa-

tion is needed, or the message must be converted, e.g., from XML to a non-standard

format.

The runtime engine contains a Workflow Manager (see Figure 4.4) that provides

all the functionality that the publish-subscribe engine needs to interact the with de-

veloped workflows. The Workflow Manager can communicate with the developed

workflows that are loaded from a directory on the file system, and can communi-

cate with the publish-subscribe engine using the internal message format.

29

Send Mail
Workflow

Transform
Workflow

Workflow
Manager

Enhance
Workflow

Publish
Subscribe

Engine

Internal
Message

Send Mail

DatabaseDatabase

Figure 4.4: Workflow Manager

Just like adapters, workflows have to be registered first, and once registered, a

workflow can be used as a subscriber of a topic.

4.7 Security

To allow the runtime engine to provide security and usage information, all incom-

ing messages are linked to an external entity that represents the sender of a the

message. External entities have to be specified by a manager using the manage-

ment application and can have different permissions.

Because the runtime engine uses adapters to encapsulate endpoint specific logic

to communicate with multiple different endpoints in a standardized way, the adapters

are also responsible to encapsulate the different security mechanisms of endpoints.

So, adapters have to provide transport level security between the runtime en-

gine and an endpoint, and the publish-subscribe engine performs the authenti-

cation and authorisation of external entities to prevent adapter developers from

having to include this logic in the adapter’s implementation.

The publish-subscribe engine does this based on information adapters have to

specify in the metadata of internal messages that are published to the publish-

subscribe engine. If the publish-subscribe engine receives an internal message

from an adapter it tries to find an external entity based on the provided metadata.

If no external entity is not found, the message is discarded.

30

Chapter 5

Architectural Design
This chapter refines the high-level design by describing the high-level components

in more detail. To develop the system in a systematic way we have used Domain-

driven design (DDD), which is an approach to develop software for complex needs

by connecting the implementation to an evolving domain model.

This chapter discusses the domain model step-by-step and provides an overview

of the complete domain model. This domain model is also used to create the data

model by using an object-relational mapping (ORM), which is a mechanism that

makes it possible to address, access and manipulate objects without having to con-

sider how those objects relate to their data sources.

This chapter is structured as follows:

Section 5.1 addresses the part of the domain model that is used for the topics and

their subscribers.

Section 5.2 discusses the part of the domain model that is used for message logging.

Section 5.3 discusses the retry mechanism.

Section 5.4 describes the request-response messaging extension of the publish-

subscribe.

Section 5.5 describes the chaining extension of the publish-subscribe engine.

Section 5.6 describes the asynchronous messaging extension of the publish-subscribe

engine.

Section 5.7 describes the queuing extension of the publish-subscribe engine.

Section 5.8 deals with security.

Section 5.9 describes the flow of a message through the runtine engine.

5.1 Topic Domain Model

Figure 5.1 depicts the part of the domain model that the publish-subscribe engine

uses for the topics and their subscribers. A short description of the classes is given

below:

• Topic. Describes a topic and its configuration.

31

Figure 5.1: Topic Model

• Category. Topics belong to a category, which makes it possible to group topics

in the management application.

• Workflow. Describes a workflow implementation stored in the file system.

• Adapter Info. Describes an adapter implementation stored in the file system.

• Adapter Instance. Describes an instance of an adapter.

• Property Name. Describes the name and description of a property declared

by an adapter.

• Property Value. Describes the name, description and value of a property

configured for an adapter instance.

• Subscriber. Represents a workflow or adapter instance that can be a sub-

scriber of a topic.

32

Topic Configuration

The publish-subscribe engine publishes messages depending on the configuration

of the topics to which the messages are published. Managers can use the manage-

ment application to create, view, update and delete the topics used by the publish-

subscribe engine. Each topic can have a different configuration which consists of

the subscribers to the topic, and the following settings:

• Name. The unique name of a topic.

• Description. The description of the topic.

• Accept Messages. Specifies if the topic is currently accepting messages. If

this property is set to false all incoming messages for this topic are rejected.

• Time To Live. The maximum time in seconds the publish-subscribe engine

may take to process messages before they become unusable and have to be

discarded.

The publish-subscribe engine provides a retry mechanism that can be configured

with the following settings:

• Max Retry Count. The number of times the publish-subscribe engine retries

to send a message to a subscriber.

• Retry Timeout. The time in seconds the publish-subscribe engine waits be-

fore the message is re-sent after a failed attempt.

• Failover Max Retry Count. The number of times the publish-subscribe en-

gine retries to send a message to a subscriber using the fail over mode of an

adapter.

The extensions of the publish-subscribe engine can be enabled and configured

with the following settings:

• Use Message Box. Specifies if the message box mechanism, which provides

asynchronous messaging capabilities, must be used.

• Use Chaining. Specifies if the chaining mechanism, which determines how

messages are published to the configured subscribers, must be used.

33

• Use Queues. Specifies if the queuing mechanism, which allows messages to

be buffered in a queue, must be used. If this setting is enabled the following

properties have to be specified as well.

– Queue Name. The name of the queue that has to be used.

– Process Messages. Specifies if the messages stored in the queue have to

be processed. If this setting is set to false new incoming messages are

still accepted and stored in the queue, but they are not processed until

this setting is enabled.

5.2 Message Logging

To allow managers to troubleshoot problems, and to provide usage information all

sent and received messages are logged to a database. Figure 5.2 depicts a simplified

view of the discussed internal message format, which we called a Communication

Center Message.

Figure 5.2: Internal Message

A Communication Center Message is serializable to XML, which means that it

can easily be exchanged with SOAP Web services or stored in a queue or database.

The payload is stored in the XML Message Body property, and it contains many

metadata properties, which are used to add information to messages, like:

• Id. A unique identification of the message.

• Created. The time the message was created.

34

• Topic. The unique name of the topic to which the message has to be pub-

lished.

• Message Exchange Pattern. Can be used to enable the synchronous request-

response messaging extension.

• Custom Properties. Consist of a name and a value added to the internal

messages constructed by the publishers. These properties can be used to add

additional information to a message that can be used by all subscribers that

receive the message.

Figure 5.3 depicts the part of the domain model that is used to perform message

logging.

Figure 5.3: Message Flow Logging

• Message. If the publish-subscribe engine sends or receives an internal mes-

sage, it creates an instance of the message class that contains additional in-

formation about the message and references to the other domain classes. It

contains the time the message was received, the publisher of the message,

the topic the message was published to and the previously described internal

message with the actual content of the message.

35

• Publish Info. Each time a message is published to a subscriber, an instance of

the publish info class is logged to the database. A publish info entity contains

the message that was published, the time the message was published, the

subscriber the message was published to and information indicating if the

message was successfully published.

• External Entity. All incoming messages are linked to an external entity to

provide security and usage information.

This model allows managers to use the management application to view the

complete flow of a message through the runtime engine.

5.3 Retry Mechanism

If the publish-subscribe engine publishes a message to a subscriber that cannot suc-

cessfully process the message, the subscriber can throw an exception. This causes

the publish-subscribe engine to re-publish the message until the topic’s maximum

retry count has been reached.

Between each retry attempt, the publish-subscribe engine waits the amount

of time that is specified by the topic’s retry timeout value. If the topic’s maxi-

mum retry count has been reached and the message still is not published success-

fully, the publish-subscribe engine re-publishes the message until the topic’s max-

imum failover retry count has also been reached. However, this time the publish-

subscribe engine sets the use fail over metadata property of the internal message

to true before re-publishing the message.

Subscribers are responsible to check if this metadata property of the internal

messages is set to true so they can take appropriate actions, such as, deliver the

message to a fail over endpoint.

Subscribers can also throw a special exception indicating that the publish-subscribe

engine does not need to re-publish this message. This can be used when performing

a task that does not succeed by just retrying, such as, for example, XSD validation.

5.4 Request-Response Messaging

In addition to the default asynchronous publish-subscribe messaging it must also

be possible to support synchronous request-response messaging, so we designed

this extension for the publish-subscribe engine to provide this functionality.

36

This extension requires all subscribers to specify their supported MEP, which

can be set to:

• One-way. Indicating that subscribers accept incoming messages, but they

can not send a synchronous reply message. However, one-way subscribers

can still publish messages.

• Two-way. Indicating that subscribers always send a synchronous reply mes-

sage when they receive an incoming message.

• None. Indicating that subscribers do not accept any incoming messages, but

they can still publish messages.

All publishers have to specify the MEP of the message, in addition to the unique

name of a topic, when publishing a message. The MEP can be set to:

• One-way. Indicating that the publisher does not expect a reply message.

• Two-way. Indicating that the publisher expects a synchronous reply message.

This extension makes it possible for subscribers to receive a synchronous reply

message when publishing a message to a topic, but at least one two-way subscriber

has to be subscribed to the topic the message is published to, otherwise the pub-

lisher is notified that the message cannot be published successfully.

5.5 Chaining

The default behaviour of the publish-subscribe engine is to publish the same mes-

sage to all subscribers of a topic in the order in which a manager specified the sub-

scribers. However, there are situations in which one subscriber’s output has to be

the input of the next subscriber, and that is exactly the functionality this extension

provides.

Figure 5.4 provides an example of a topic that has three subscribers, and is

configured to use chaining. The numbers in Figure 5.4 identify a message, if a

subscriber modifies a message the number is incremented to indicate the reply is a

new message.

The message flow when chaining is enabled is as follows:

• The first subscriber receives the original message that was published to the

topic.

37

2

Publish
Subscribe

Engine

Internal
Message

(Two-Way)

1

Subscriber 2
(One-way)

Subscriber 3
(Two-way)

Subscriber 1
(Two-way)

1

2

2

3
Internal
Message

(Two-Way)

3

Figure 5.4: Internal Message

• The reply of a two-way subscriber is the input of the next subscriber.

• One-way subscribers do not modify messages, which means the same mes-

sage the one-way subscriber received, is published to the next subscriber.

If chaining was not enabled all subscribers would receive the original message

that was published to the topic (message number 1 in Figure 5.4).

The chaining extension allows the runtime engine to perform message process-

ing using separate workflows, according to the VETO pattern [1] [2]. The VETO

pattern is a common integration pattern that stands for Validate, Enrich, Trans-

form, Operate (see Figure 5.5), and can ensure that consistent, validated data is

routed through the bus.

Figure 5.5: The VETO Pattern [1]

To do this developers can develop separate workflows to validate, enrich and

transform messages. A manager can then subscribe these workflows to the same

topic in the proper order, and enable chaining for this topic. The publish-subscribe

engine then forwards the results between the workflows, and could forward the

final result to an adapter.

38

5.6 Message Box

The runtime engine provides the message box extension to provide support for

asynchronous messaging without external entities having to open inbound ports

in their firewalls.

This extension allows the publish-subscribe engine to store the result of, for ex-

ample, a long running business process implemented as a workflow in the publish-

subscribe engine’s message box. This allows the external entity that started the

processing of the message to retrieve the result asynchronously.

Adapters are responsible to provide this functionality to the external entities

because each adapter can provide the results in a different format and provide

different behaviour for retrieving the results.

Examples of mechanisms for delivering messages to external entities are:

• Providing a Web service that can be polled to retrieve the messages in the

message box.

• Storing the messages in a file on a FTP server.

• Periodically sending emails with the content of the messages.

The developer of an adapter is completely free to decide how to asynchronously

deliver the messages to an external entity.

Figure 5.6 shows how the Message class from Figure 5.3 is used by the message

box extension.

Figure 5.6: Message Box

Because all messages are logged, the MessageBoxMessage does not contain a

39

copy of the actual message, but it is just refers to the following two logged mes-

sages:

• Original Message. The message that was sent by an external entity and ini-

tiated the long running process.

• Reply Message. The message that was received as a result of the long running

process and has to be accessible via the message box.

In addition, it contains the following information for each message:

• Success. Indicates if the message was successfully published by the publish-

subscribe engine.

• Error Message. Contains the error message if the message was not published

successfully.

• Is Read. Indicates if the message has already been retrieved by an external

entity.

• Message Batch Id. An unique identifier which can be used to mark a batch of

messages as read with a single identifier. This functionality is demonstrated

in Section 7.6.

5.7 Queues

Topics can be configured to use a queue to buffer incoming messages to cope with

differing handling speeds and prevent message loss.

When a topic is configured to use the queuing extension, the publish-subscribe

engine stores all messages that are published to the topic in a queue before they are

published to the subscribers. Immediately after a message is stored in the queue,

it returns a synchronous publish result indicating if the message was accepted and

successfully stored.

The actual reply messages sent by the subscribers can be stored in the publish-

subscribe engine’s message box, which allows the publisher to receive these mes-

sages asynchronously.

Because the publish-subscribe engine only has to store the message in the queue

and can then asynchronously process them, it can accept messages much faster

than it processes them. However, the use of queues prevents synchronous messag-

ing.

40

The publish-subscribe engine uses a configurable amount of threads to simul-

taneously process the queued messages. To prevent multiple threads from process-

ing the same message, it automatically creates two queues for each topic that uses

queues, one for incoming messages, and the other for messages that are currently

being processed.

Before a thread starts processing a message, the message is moved to the cur-

rently processing queue for that topic, and when a thread finishes processing a

message it is removed from the queue.

In case the runtime engine is unexpectedly restarted, this mechanism makes it

possible to fully recover without sending unnecessary duplicated messages. This

is possible because it knows which messages were being processed when it was in-

terrupted, by looking in the currently processing queues. It can retrieve the logged

publish information objects from the database for each of those messages. Based

on these objects and the topic’s retry settings, it is possible to determine how many

times a message has already been published, and how many remaining times the

message has to be published and to which subscribers.

5.8 Security

The runtime engine uses X.509 certificates for the authentication of external enti-

ties because this allows the existing customers’ certificates to be reused. X.509 is,

amongst other things, a standard for a public key infrastructure (PKI). However,

the runtime engine can easily be extended to support additional security mecha-

nisms.

Managers can use the management application to specify all external entities

that have to be able to interact with the runtime engine. For each external entity,

at least the name and the thumbprint of the external entity’s certificate has to be

specified. The thumbprint is a hash of the public key of the certificate, and is used

to find the certificate in the certificate store of the computer running the runtime

engine.

When an adapter publishes a message, it has to specify the thumbprint of the

external entity in the metadata of the internal message that it publishes to the

publish-subscribe engine. When the publish-subscribe engine receives a message,

it uses this metadata to find the certificate.

If the external entity is not found, the message is rejected, otherwise the publish-

subscribe engine uses the entities depicted in Figure 5.7 for authorization. The

41

SecurityInfo class represents a security rule indicating if an external entity can

publish and/or receive messages to/from a topic or category.

Figure 5.7: Security Model

5.9 Example Message Flow

Figure 5.8 depicts the message flow when a message is published to a topic that

uses queuing, chaining and the message box extensions.

1
0

8

Publish
Subscribe

EngineInternal
Message

(One-Way)

1-3

Topic
Queue

2

1
1

Subscriber 2
(One-way)

Subscriber 3
(Two-way)

Subscriber 1
(Two-way)

5

6

7

4

9

Message
Box

Figure 5.8: Message Publishing Process

42

Message flow when subscriber 1, 2 and 3 depicted in Figure 5.8 are all sub-

scribed to the topic an example message is published to:

1. The publish-subscribe engine receives a message from a publisher and checks

if the message can be accepted based on the topic’s configuration and the

thumbprint specified in the metadata of the internal message.

2. If the message is accepted the publish-subscribe engine stores it in the topic’s

queue.

3. The publish-subscribe engine returns a synchronous publish result to the

publisher indicating if the message was accepted and successfully added to

the queue.

4. When one of the message processing threads is available, the publish-subscribe

engine retrieves a message from the topic’s queue.

5. The publish-subscribe engine sends the retrieved message to subscriber 1.

6. The publish-subscribe engine receives the reply message from subscriber 1.

7. The publish-subscribe engine sends the reply message that was received from

subscriber 1 to subscriber 2.

8. The publish-subscribe engine sends the reply message that was received from

subscriber 1 to subscriber 3 because subscriber 2 is a one-way subscriber.

9. The publish-subscribe engine receives the reply message from subscriber 3.

10. The publish-subscribe engine stores the reply message that was received from

subscriber 3 in the message box.

11. Once the publish-subscribe engine published the message successfully to all

subscribers, it removes the message from the queue.

43

Figure 5.9 gives a complete view of the domain model.

Figure 5.9: Domain Model

44

Chapter 6

Prototype Implementation
This chapter describes the implementation of the PCC2 prototype according to the

architecture discussed in Chapter 4 and 5.

We chose to implement the prototype using the .NET framework to allow it

to integrate with CompanyX’s systems, but our architecture can be implemented

using any implementation technologies.

This chapter is structured as follows:

Section 6.1 discusses the two most important technologies that we have identified

for the development of custom ESB systems.

Section 6.2 describes the Service Host Factory that we have developed to facilitate

the hosting of Web services.

Section 6.3 describes the communication with the management application.

Section 6.4 describes the implementation of the adapter framework.

Section 6.5 explains the implementation of the workflow framework.

Section 6.6 discusses the limitations of the implementation.

6.1 Implementation Technologies

Based on the knowledge acquired during our previous research we have identified

the following two important technologies, which are part of the .NET Framework

and can be used in the implementation of custom ESB systems, namely Windows

Communication Foundation [22] [23] and 6.1.2 Windows Workflow Foundation

[24].

6.1.1 Windows Communication Foundation

Windows Communication Foundation (WCF) is the most important building block

part of the .NET framework that we have used to facilitate the interaction between

the PCC2 and Web services is the. WCF can be used for building service-oriented

applications and it offers a range of capabilities for communicating applications.

The three most important aspects of WCF are:

45

1. Unification of the original .NET Framework communication technologies.

2. Interoperability with applications built on other technologies.

3. Explicit support for service-oriented development.

Because WCF unifies different approaches to communication, WCF implements

Web services technologies defined by the WS-* specifications to allow more than

just basic communication. Figure 6.1 shows how these specifications address sev-

eral different areas, including basic messaging, security, reliability, transactions,

and working with service metadata.

Figure 6.1: Web services standards implemented in WCF [22]

WCF facilitates the creation of distributed applications on Windows operating

systems. It provides broad interoperability with other platforms because it im-

plements SOAP and the most important WS-* specifications, along with RESTful

communication. It also gives developers an environment for developing and de-

ploying service-oriented applications because it offers explicit support for service-

orientation.

Some benefits of WCF are:

1. It provides an extensive API which can be used to develop the base of an ESB.

2. Although it is also possible to implement an ESB without WCF, a compelling

reason to use it is the amount of code that has to be written for basic infras-

tructure mechanisms (e.g., reliable messaging, transactions and security) is

significantly reduced compared to using the traditional .NET communication

mechanisms.

46

6.1.2 Windows Workflow Foundation

We have used Windows Workflow Foundation (WF), which is also part of the .NET

Framework to implement the workflow framework.

We used WF in combination with WCF to provide the framework for defining

workflows that can be called via Web services and updated at runtime to perform

many tasks such as service composition, executing long-running business processes

or message processing.

The primary goal of WF is to keep the applications logic unified, making it

more understandable, while still letting the application scale [24].

WF provides a foundation for creating unified and scalable applications by sup-

porting logic created using workflows. In addition, WF can also addresses other

development challenges, such as coordinating parallel tasks and tracking program

execution.

WF is a Microsoft technology that provides an API, an in-process workflow en-

gine, and a rehostable designer to implement long-running processes as workflows

within .NET applications.

The current version of WF was released as part of the .NET Framework version

4.5. We will refer to it as WF4.5 in this report.

6.2 Service Host Factory

When creating service-oriented applications, hosting Web services is a common

task that has to be facilitated. The most flexible and easiest way to host Web ser-

vices using WCF is to let an application host the services itself because that requires

the least infrastructure to deploy. Hosting a service in this way is often referred to

as "self-hosting".

To make the self-hosting of Web services as simple as possible we have devel-

oped a Service Host Factory that allows developers to host a Web service using

different protocols and using different security features with a single method call.

The Service Host Factory takes care of all functionality that is needed to host and

configure the Web services. In addition, it allows developers to create a proxy that

they can use to call the hosted Web service.

One challenge we encountered when implementing the Service Host Factory

was that normal WCF services are self-contained classes without any external de-

pendencies. That is why the default instantiation behavior for WCF is simply to

47

call a parameter-less constructor of a service class.

However, a common task of the adapters instances used in the adapter frame-

work is to host Web services, and the implementation of these Web services must

have access to the adapter instance that hosted the Web service to access its prop-

erties.

Over 30 different extensibility points are available to allow developers to mod-

ify WCFs default behaviour. We used these extensibility points to allow the Service

Host Factory to host services that require an adapter as a parameter when they are

instantiated.

Figure 6.2 provides an overview of the Service Host Factory classes.

Figure 6.2: Service Host Factory classes

• Service Host Factory. Allows developers to self-host Web services that do not

require any parameters when they are instantiated. To self host a Web service

developers have to call the CreateInitializeAndOpenServiceHost method and

specify the generic type of the class containing the service implementation.

This method requires the following properties as parameters:

– Service Name. The name of the service that is used to construct the

endpoint address to reach the service.

– Base Addresses. A list of base addresses that is used to determine the

endpoint addresses of the endpoints that have to be hosted for the speci-

fied service. For example, if the following value is specified: "https://localhost:

1045, net.tcp://localhost:1046" the Service Host Factory hosts a HTTPS

48

and a TCP endpoint. The addresses of these endpoints are these base

addresses suffixed with the service name.

– SSL Certificate Thumbprint. Optionally, the thumbprint of the X.509

certificate that has to be used to secure the endpoints can be defined.

• Adapter Service Host Factory. Extends the Service Host Factory to add func-

tionality that allows developers of adapters for the adapter framework to self-

host Web services that need an adapter instance as a parameter.

• Adapter Service Base. Base class that service implementations need to ex-

tend to receive an adapter instance as a parameter.

• Adapter Instance Provider. Implements a WCF interface to override the de-

fault instantiation behavior of WCF to call the constructor of services that

extend the AdapterServiceBase class instead of simply calling the parameter-

less constructor of the service class.

• Adapter Service Host Provides functionality that is required by WCF to ac-

tually host the service implementations as Web services.

6.3 Management Application

We chose to implement the management application with the .NET Framework

4.5 using Windows Forms (WinForms) [25], which is the name given to the graph-

ical application programming interface in the Microsoft .NET Framework. This

provides access to native Microsoft Windows interface elements by wrapping the

Windows API in managed code.

The management applications features are covered in Chapter 8 by discussing

its application to configure a complete integration scenario.

When the runtime engine starts it hosts a SOAP Web service using the Service

Host Factory. This service is secured using X.509 certificates and allows multiple

management applications to manage and monitor the runtime engine.

The runtime engine communicates with a database to store its configuration

and log messages, but the management application does not directly communicate

with this same database. This allows the database to run on a different server that

is only accessible by the server running the runtime engine.

49

Data Transfer Objects

To transfer data between the management application and the runtime engine we

use DTOs (Data Transfer Objects). DTO is a commonly used pattern in enterprise

applications [26].A DTO is a simple container for a set of aggregated data that

needs to be transferred across a process or network boundary. When designing a

data transfer object, there are two primary choices: (1) use a generic collection or

(2) create custom classes with explicit getter and setter methods. We chose to im-

plement custom classes for each DTO because this provides strongly-typed objects

that the management application can access exactly like any other class, so they

provide compile-time checking. The main drawback is that it costs more develop-

ment effort and is less flexible than using a generic collection.

6.4 Adapter Framework

We used the Managed Extensibility Framework (MEF) [27], which is a part of the

.NET Framework to allow the adapter framework to dynamically load adapters

from the file system at runtime. We chose MEF because it provides the level of

flexibility we need, and it does not require any third-party components.

MEF can be used for creating lightweight, extensible applications and it allows

application developers to discover and use extensions with no configuration re-

quired. It also lets extension developers easily encapsulate code and avoid fragile

hard dependencies. MEF allows extensions to be reused within applications, but

also across applications as well.

To develop an adapter for the adapter framework, a C# class has to be created

that inherits from the abstract AdapterBase class (see Figure 6.3) and is exported

using MEF.

50

Figure 6.3: Adapters

The AdapterBase class contains methods that a concrete implementation can

override to execute code when an adapter is started or stopped, and methods that

take care of the communication with the Adapter Manager to publish or receive

messages.

Figure 6.4 depicts the implementation code of an example adapter that can

receive messages from the publish-subscribe engine and write them to a text file in

a directory that is specified by a manager using the management application.

The constructor of the adapter specifies the adapters name and that it is a one-

way subscriber, which means that the adapter does not return synchronous reply

messages when it receives a message from the publish-subscribe engine.

The adapter declares one string property called DestinationFolder that can be

set by a manager using the management application.

The ReceiveMessage method is used to inform the adapter that it received a

message from the publish-subscribe engine.

To use a developed adapter such as the FileWriterAdapter, the adapter code

has to be compiled to a dynamic-link library (DLL) and placed in the runtime en-

gine’s adapter folder. This causes the runtime engine to automatically discover

the adapter and makes it possible to use the management application to register

the adapter, create multiple instances of the registered adapter and configure the

51

Figure 6.4: File Adapter

properties of each instance. Finally, the instances can be added as subscribers of

topics. These steps are discussed in detail in Chapter 8.

6.5 Workflow Framework

The workflow framework allows developers to develop and deploy reusable WF 4.5

workflows that are are stored as Extensible Application Markup Language (XAML)

files. XAML is a declarative XML-based language created by Microsoft that is used

for initializing structured values and objects. XAML files can be created and edited

with many applications, such as the Windows Workflow Foundation Designer in

Visual Studio or with a standard text editor. Because workflows are stored as XAML

files they can easily be modified at runtime without requiring any code to be recom-

piled.

Figure 6.5 depicts the Windows Workflow Foundation 4.5 Designer in Visual

Studio 2012.

52

Figure 6.5: Visual Studio 2012 - WF4.5 Designer

This interface has the following panes:

1. Toolbox. Displays activities that can be dragged onto the Canvas.

2. Canvas. Displays all activities that form the workflow.

3. Arguments. Displays the input parameters of the workflow.

4. Property Grid. Can be used to configure properties of activities on the can-

vas.

WF 4.5 supports workflows that can have input parameters and these parame-

ters can have different directions. The workflow framework allows the deployment

of workflows that accept a single input parameter of the internal message (dis-

cussed in Section 5.2).

This parameter must have one of the following directions:

• In. This creates a one-way subscriber, which means that the workflow re-

ceives the internal message and can use it in the workflow, but it does not

return a reply message to the publish-subscribe engine.

• In/Out. This creates a two-way subscriber that allows the workflow to modify

the incoming message and return a new or modified message which can then

be published to the next subscriber.

53

Figure 6.6: Visual Studio 2012 - WF4.5 Example

Figure 6.6 depicts a simple two-way example workflow that receives a message

and transforms it by performing the following steps:

1. It checks if the value of the EmployeeName custom property of the internal

message it received is equal to "Clermond".

2. If the condition is satisfied, it assigns a new value to a node of the received

internal message that it found using a XPath expression. This is done by

the assign activity in the "Then" branch of the If condition. The full text

of the assign activity is: Message.XmlMessageBody.SelectSingleNode("XPath

expression").InnerText = "New Value".

3. If the condition is not satisfied it throws a new publish exception that informs

the publish-subscribe engine that further processing is not necessary.

6.6 Limitations

The prototype has been implemented according to the architecture discussed in

Chapter 5and includes almost all of the described functionality, expect for the fol-

lowing two features:

54

• Authorization Referring to the authorization capabilities defined in Section

5.8 we have only implemented the authentication because this is a mandatory

requirement (R7), but we have not implemented the authorization capabili-

ties (Figure 5.7) because this is an optional requirements (R12) and we did

not have time to implement it.

• Recovery Referring to the recovery capabilities in Section 5.7we have fully

implemented the queuing functionality, but if the runtime engine is unex-

pectedly restarted it re-publishes all the messages that were being published

as if they were received for the first time. Therefore, no messages are lost, but

a subscriber of a topic with multiple subscribers might receive the same mes-

sage multiple times. The recovery functionality without sending duplicated

messages has not been implemented yet because it is not a requirement, and

it is not necessary for our integration scenario.

55

Chapter 7

Case Implementation
This chapter we describes the implementation of the case study, which we per-

formed to test, demonstrate and evaluate the functionality of the prototype.

This chapter is structured as follows:

Section 7.1 describes the integration scenario that we used in this case study.

Section 7.2 provides an overview of the different components that we have devel-

oped for this integration scenario.

Section 7.3 discusses an adapter that we have developed for this integration sce-

nario which hosts Web services using the Service Host Factory.

Section 7.4 discusses an adapter that we have developed for this integration sce-

nario which can send web requests.

Section 7.5 explains the implementation of a routing workflow that we have devel-

oped for this integration scenario to demonstrate the workflow framework.

Section 7.6 provides an overview of the flow of messages through the runtime en-

gine when using the developed components.

7.1 Integration Scenario

CompanyX offer customers the service to digitally apply for export documents at

the Chamber of Commerce (CoC) and print these documents at their own offices.

This saves customers time and money because the CoC’s prices for digitally submit-

ted documents are less expensive than using hard copies, and in this way customers

do not have to travel to the CoC.

An example of such a document is a Certificate of Origin document, which is

used in the case of countries with which the EU has closed a trade agreement. This

document grants lower import duties or even waives these entirely. There are many

of such documents, and each document has to be sent to a different Web services

of the CoC.

Figure 7.1 depicts the high-level components involved in this integration sce-

nario.

56

Customer

Management
Application

Manager

Runtime
Engine

Chamber of
Commerce
Connector

Chamber of Commerce
Services

Figure 7.1: Integration Scenario Context Diagram

• Chamber of Commerce Connector. An application developed by CompanyX

that is installed at the customers’ computers to allow them to use a GUI to

fill in export documents. Once a customer filled in an export document it is

saved in an XML format that adheres to XSD schemas that are provided by

the CoC.

Each export document has its own message type, which is a string value in-

dicating the type of the export document, and it can be used to determine to

which CoC service the export document has to be sent.

• Chamber of Commerce Services. The services of the CoC that can receive

digital export documents in XML format over an HTTPS connection.

• Management Application. The PCC2 management application that is used

to manage the runtime engine.

• Runtime Engine. The PCC2 runtime engine that routes the messages to the

proper CoC services based on their message type.

7.2 Overview

The PCC2 offers are many different approaches to provide a solution for this in-

tegration scenario. To demonstrate this, we have implemented two different solu-

tions using two different approaches for this scenario. We call them the ’adapter

57

approach’ and the ’workflow approach’. We have chosen to provide two solutions

that demonstrate the most important features of the implementation.

Figure 7.2 provides a an overview of the components that are used in both ap-

proaches. The difference between the two approaches is in the way the publish-

subscribe engine publishes messages to its subscribers to route the messages to the

proper CoC services. For each approach we have developed a Chamber of Com-

merce Connector Adapter (CoC adapter) for the communication with the CoC con-

nector, and a HTTP Post adapter for the communication with the CoC services.

These four adapters are discussed in detail in the sequel.

Runtime Engine

Chamber of
Commerce

Adapter

HTTP Post
Adapter

Publish
Subscribe

Engine

CoC Service
CoC

Connector

Figure 7.2: Message Flow Overview

Both solutions use the queuing extension, which prevents message loss in case

the runtime engine is unexpectedly restarted and allows the publish-subscribe en-

gine to process all messages asynchronously.

To prevent customers from having to open inbound ports in their firewalls to

retrieve the asynchronous reply messages, we have modified the CoC connector to

make use of the message box extension, instead of hosting a Web service to receive

reply messages like when communicating with the PCC.

Finally, we have implemented a routing workflow that is used in the workflow

approach to demonstrate the workflow framework.

Both approaches are discussed below.

7.2.1 Adapter Approach

The adapter approach demonstrates the strength of the adapter framework and

publish-subscribe engine by providing a solution for the integration scenario with-

out using workflows. Figure 7.3 depicts an overview of the message flow through

the runtime engine when using the adapter approach.

The CoC adapter used in the adapter approach publishes messages of a differ-

ent message type to a different topic. So, each topic represents a message type, and

each topic has an instance of one of the HTTP Post adapters as its subscriber. Each

instance of this HTTP Post adapter is configured with a single endpoint address of

the proper CoC service.

58

Figure 7.3 only depicts three topics for readability, but there are actually twelve

different message types, which means that using this approach twelve topics are

necessary.

CoC Service 1

HTTP Post
Adapter

Instance 1

CoC Service 2

CoC Service 3

Chamber of
Commerce

Adapter

HTTP Post
Adapter

Instance 2

HTTP Post
Adapter

Instance 3

Topic 1

Topic 2

Topic 3
CoC

Connector

Figure 7.3: Adapter Approach Overview

7.2.2 Workflow Approach

The workflow approach demonstrates the strength of the workflow framework and

chaining extension by performing the routing of the messages in a workflow. Fig-

ure 7.4 depicts an overview of the message flow through the runtime engine when

using the workflow approach. The difference with the adapter approach is that this

variant of the CoC adapter publishes all messages of the different message types to

a single topic, and this topic has two subscribers instead of one.

The first subscriber is a routing workflow that determines the proper CoC ser-

vice to which the message has to be sent to, and enhances the received internal

messages with this routing information by adding custom properties.

By enabling the chaining mechanism it is possible to use these enhanced mes-

sages as the input of the second subscriber. This is a variation of the HTTP Post

Adapter, which sends the content of the enhanced internal messages to the end-

point address that was added by the routing workflow.

Chamber of
Commerce

Adapter

HTTP Post
Adapter

Topic

CoC Service
CoC

Connector

Routing
Workflow

Figure 7.4: Workflow Approach Overview

59

7.3 Chamber of Commerce Connector Adapter

Figure 7.5 depicts the two CoC adapters that we have implemented. Both adapters

use the None MEP, which means they cannot be a subscriber of a topic and do

not receive any messages from the publish-subscribe engine, but they only publish

messages to the publish-subscribe engine.

Each adapter host two SOAP Web services to communicate with the CoC con-

nectors that are running on the customers’ computers. To host these Web services

both adapters, declare the properties that are required for the Service Host Factory,

and declare the IsDownForMaintenace property that can be updated at runtime to

accept or reject incoming messages.

Figure 7.5: Chamber of Commerce Connector Adapters

• Dae Connector Adapter. This adapter is used in the adapter approach and

provides the following additional property:

– Message Type Mapping List. A list of strings containing the mapping

between the message types and topic names that the adapter must use

to determine the topic the incoming messages have to be published to.

• Dae Connector Adapter Fixed Topic. This adapter is used in the workflow

approach and publishes all incoming messages to a single topic. In addition

to the properties required by the Service Host Factory this adapter provides

the following additional property:

– Topic To Publish To. The name of the topic that all incoming messages

have to be published to.

60

The difference between the two adapters is that the first adapter publishes all

messages to a single topic, and the second adapter provides a property that allows

managers to specify the mapping between the message type of a message and the

topic the message has to be published to.

7.3.1 Web Service Implementation

Figure 7.6 depicts the two SOAP Web services that are hosted by the CoC adapter

to communicate with the CoC connectors.

Figure 7.6: Web services

1. Dae Connector Service. This Web service receives messages containing the

export documents in XML format that have to be sent to one of the CoC ser-

vices, and it returns a synchronous reply to indicate if the publish-subscribe

engine successfully accepted a message.

2. Dae Connector Message Box Service. This Web service allows customers to

asynchronously retrieve the actual results which the publish-subscribe en-

gine stores in the message box.

Figure 7.7 shows part of the C# code of the ProcessExternalRequestMessage

method of the Dae Connector Service class that accepts the export documents in

XML format.

61

When WCF receives a valid SOAP message, it automatically converts it to C#

objects and invokes this method. The method processes the incoming message,

and because this Web service is hosted with the Service Host Factory it can directly

access the adapter instance that hosts this Web service.

This method does the following:

• It checks the Is Down For Maintenance property of the adapter instance to

determine if the adapter is in maintenance mode.

• If it is in maintenance mode the message is rejected, otherwise the GetInter-

nalMessage helper method (showing in Figure 7.8) is called to create an in-

ternal message.

• The GetInternalMessage helper method creates a new internal message that

can be published to the publish-subscribe engine. The created internal mes-

sage’s payload is the export document in XML format, and also contains meta-

data such as the thumbprint of the CoC connector’s certificate, and a custom

property that contains the message type of the received message.

• The created message is then published to the publish-subscribe engine, which

returns a publish result indicating if the message was accepted.

• Finally, the publish result is checked and an appropriate reply is returned to

the CoC connector as the result of the Web service call.

62

Figure 7.7: CoC Adapter - Web Service Implementation

63

Figure 7.8: CoC Adapter - Web service Implementation

64

7.4 HTTP Post Adapter

Figure 7.9 depicts the two HTTP Post adapters that we have implemented. The

HTTP Post adapter can send messages to an endpoint using the HTTP and HTTPS

Post method. Both adapters use two-way MEP, which means that they can be a

subscriber of a topic to receive messages from the publish-subscribe engine and

send synchronous reply messages with the results returned by the endpoints.

Figure 7.9: HTTP(S) Post Adapters

• Http Post Adapter Fixed Address. This adapter is used in the adapter ap-

proach and declares the following two properties that have to be configured

for each instance of the adapter:

– Destination Endpoint Address. The endpoint address to which the

adapter instance has to send all messages.

– Server Certificate Thumbprint. The thumbprint of the certificate that

has to be used to secure the connection. If this value is set the adapter

uses HTTPS, otherwise HTTP is used.

• Http Post Adapter. This adapter is used by the workflow approach and it

declares no properties, but requires the same two values to be passed as cus-

tom properties of the internal messages it receives from the publish-subscribe

engine.

So, the main difference between the two adapters is that the first adapter re-

quires a new instance of the adapter for each different endpoint, and the second

65

adapter only needs a single instance, but requires that the internal messages it re-

ceives contain the two properties as custom properties.

7.5 Route Workflow

Figure 7.10 depicts the routing workflow in the WF 4.5 Designer in Visual Studio

2012 that enhances internal message with the two custom properties the HTTP

Post adapter requires. It does this based on the MessageType custom property that

is added by the CoC adapter in the method GetInternalMessage (see Figure 7.8).

The workflow consists of a sequence activity that contains the following three

sub-activities:

1. A switch statement on the custom property of the internal message that con-

tains the message type. Each case statement contains an assign activity which

assigns the destination address of the correct CoC service for the specific mes-

sage type to the Destination variable. For readability only one case statement

is expanded in Figure 7.10, the others are collapsed.

The Default switch statement throws a publish exception indicating that the

message type is unknown, which prevents the publish-subscribe engine from

publishing the message to the next subscriber.

2. An activity that calls the AddCustomProperty method of the internal mes-

sage to add the value of the Destination variable as a custom property.

3. An activity that calls the AddCustomFProperty method of the internal mes-

sage to add the thumbprint of the certificate that has to be used for the com-

munication with the CoC services as a custom property.

66

Figure 7.10: Visual Studio 2012 - WF4.5 Designer

67

7.6 Message Flow

Figure 7.11 depicts the flow of a message through the runtime engine when using

the adapter approach.

Figure 7.12 depicts the detailed flow when using the workflow approach.

This section only discusses the flow of the workflow approach in detail because

two approaches are quite similar, and the differences can clearly be seen by com-

paring Figure 7.11 and 7.12.

FTP
Adapter

SOAP
Web service

Adapter

Adapter
Manager

Custom
Adapter

Send Mail
Workflow

Transform
Workflow

Workflow
Manager

Enhance
Workflow

Runtime Engine

Adapter
Manager

Chamber of
Commerce

Adapter

HTTP Post
Adapter

(Instance 2)

HTTP Post
Adapter

(Instance 3)

Adapter
Manager

HTTP Post
Adapter

(Instance 1)

Message Box

Message Queue

CoC Service 1

CoC Service 2

CoC Service 3

Topic 1

Topic 2

Topic 3

Pub-Sub-Engine

Chamber of
Commerce
Connector

Figure 7.11: Adapter Approach Message Flow

68

Adapter
Manager

Custom
Adapter

Chamber of
Commerce
Connector

Send Mail
Workflow

Transform
Workflow

Workflow
Manager

Enhance
Workflow

Runtime Engine

Adapter
Manager

Chamber of
Commerce

Adapter

Route
Workflow

Workflow
Manager

3

13

Publish-
Subscribe

Engine1-5

Message Queue

CoC
Topic

Message Box

Enhance
Workflow9

2-4

7

8-10

11

12-14

CoC Service

6

16

HTTP Post
Adapter

15

Figure 7.12: Workflow Approach Message Flow

The flow is the following:

1. A CoC connector sends an export document in XML format to the CoC adapter

using the SOAP Web service that the adapter hosts to accept export docu-

ments. While the connection with the CoC adapter stays open, steps 2, 3 and

4 are performed.

2. The CoC adapter wraps the received XML export document in an internal

message, adds the thumbprint of the certificate that was used to establish the

connection with the adapter’s Web service as metadata to the created internal

message, and then publishes the internal message to the publish-subscribe

engine.

3. The publish-subscribe engine inspects the published message and verifies

that the sender of the message is known based on the provided thumbprint.

If the sender is known, the publish-subscribe engine retrieves the topic from

the database. Because the topic is configured to use the queuing extension,

the publish-subscribe engine stores all messages in the queue that is specified

in the topics settings.

4. Because the topic uses the queuing mechanism, the publish-subscribe engine

69

immediately returns a publish result indicating if the message has been ac-

cepted and successfully stored in the queue.

5. The CoC adapter retrieves the publish result from the publish-subscribe en-

gine and uses the open connection to notify the CoC connector if the message

was accepted, and then the connection is closed.

6. When one of the message processing threads is available, the publish-subscribe

engine retrieves a message from the topic’s queue.

7. The publish-subscribe engine inspects the retrieved message and publishes

the message to the first subscriber, which is the routing workflow.

8. The publish-subscribe engine publishes the enhanced internal message that

the routing workflow returned to the HTTP Post adapter, which is possible

because we have configured the topic to use the chaining mechanism.

9. The HTTP Post adapter sends the content of the internal message, which is

the export document in XML format, to the proper CoC service by using the

endpoint address that is specified in the metadata of the enhanced internal

message.

10. Because the HTTP Post adapter is a two-way subscriber, it returns the reply

it received from the CoC service to the publish-subscribe engine.

11. Because the HTTP Post adapter is the last subscriber and chaining is enabled,

the publish-subscribe engine stores the reply it received from the HTTP Post

adapter in the message box. The message processing thread then removes the

message from the queue and terminates because it completed publishing the

message.

12. The CoC connector periodically polls the message box Web service hosted by

the CoC adapter to check if there are results for messages that were accepted

by the publish-subscribe engine.

13. The CoC adapter leaves the connection with the CoC adapter open, and queries

the message box table in the database to retrieve all unread messages for the

proper CoC connector. It does this by using the thumbprint of the certificate

that is used to establish the connection with the message box Web service to

filter the messages.

70

The CoC adapter also assigns a unique batch id to all the unread messages,

and updates the message box table in the database.

14. The CoC adapter uses the open connection to return the retrieved messages

together with the unique batch id to the CoC connector. If the publish-

subscribe engine fails to process any message for this CoC connector, it re-

turns the errors that occurred instead of actual reply message, and then the

connection is closed.

15. If the CoC connector receives all reply messages successfully, it calls one last

Web service method of the message box Web service, and passes the unique

batch id it received to indicate that it has successfully received all messages

with the specified batch id.

16. The CoC adapter marks all messages with the specified batch id as read,

which prevents them from being returned the next time the CoC connector

polls the message box Web service for unread messages.

71

Chapter 8

Case Configuration
This chapter demonstrates the operation of the management application to con-

figure the runtime engine according to the approaches discussed in Chapter 7 by

using the developed workflow and adapters. The chapter also discusses the work-

flow approach in detail because it covers most of features of the the management

application. The chapter also briefly discusses the configuration of the adapter

approach to cover the remaining features of the management application.

This chapter is structured according to the management applications main menu

which is depicted in Figure 8.1.

Figure 8.1: PCC2 Main Menu

Section 8.1 describes how developed adapters can be registered and instantiated.

Section 8.2 explains how a routing workflow can be registered.

Section 8.3 discusses the interface to manage topics and categories.

Section 8.4 explains how to specify external entities that are allowed to communi-

cate with the publish-subscribe engine.

Section 8.5 shows how the complete flow of a message through the runtime engine

can be viewed.

Section 8.6 explains how the runtime engine can be configured to use the adapter

approach instead of the workflow approach.

72

8.1 Adapters

Figure 8.2 depicts the interface that lists the adapters which we have developed,

compiled to DLL files and placed in the runtime engines’ adapter folder. For the

workflow approach we have registered the intended versions of the CoC adapter

and the HTTP Post adapter by selecting them and clicking the Register Adapter

button.

Figure 8.2: Loaded Adapters

Once the adapters have been registered, the interface depicted in Figure 8.2 can

be used to create instances of the adapters by specifying a name for the instance,

values for the declared properties and then clicking the Add Adapter Instance but-

ton. We assign the value "Chamber of Commerce" to the TopicToPublishTo prop-

erty, to configure the adapter to publish all messages to this topic.

Figure 8.3: Registered Adapters

73

Once the Add Adapter Instance button is pressing, the management application

sends the information to the runtime engine, which adds the new instance to the

database. The runtime engine then instantiates a new instance of the adapter class

in a separate thread, and sets the properties with the specified values. The adapter

instance is then ready to perform its task and can be used as a subscriber of a topic,

if it does not use ’None’ as its MEP. The properties of the running adapter instances

can also be viewed and updated at runtime using the interface depicted in Figure

8.4.

Figure 8.4: Running Adapter Instances

8.2 Workflows

Figure 8.5 depicts the interface that lists the workflow that we have developed and

placed in the runtime engines’ workflow folder. We have registered the workflow

by specifying a description and then pressing the Register Workflow button.

74

Figure 8.5: Loaded Workflows

The values in the Is Two-Way column indicate if a workflow is a one-way or a

two-way subscriber. This is automatically determined by analyzing the input pa-

rameters of the workflow. A workflow with a single input parameter of the internal

message type with the In/Out direction it is a two-way subscriber, while if the pa-

rameter has In direction the workflow is a one-way subscriber.

Workflows that have a different direction or the wrong input type are ignored

by the application and not shown in the list.

Once a workflow is registered it can be used as a subscriber of a topic.

8.3 Topics

Once the adapters and the workflow are configured we have to create a topic for

them. To do this we first need to create a category to which the topic belongs using

the interface depicted in Figure 8.6.

75

Figure 8.6: Category Form

Once a category has been added the interface depicted in Figure 8.7, it can be

used to add topics.

76

Figure 8.7: Topics Form

We have configured the topic according to the discussed settings, so it uses

the queing, chaining and message box extensions. For the MSMQ Queue Name

property, we have specified a simple name of a queue that is automatically created

on the server that executes the runtime engine. It is also possible to specify the

path of a remote queue that runs on another server.

Figure 8.8 depicts the interface that can be used to manage existing topics.

77

Figure 8.8: Topics Form

This interface has the following panes:

1. Categories. Can be used to select a category, and once a category is selected

the topics pane (indicated with 2) displays all the topics of the selected cate-

gory.

2. Topics. Can be used to select a topic that belongs to the selected category,

and once a topic is selected the update topic pane (indicated with 3) displays

the properties of the topic.

3. Topic Properties. Can be used to configure the topic’s properties or remove

the topic.

Figure 8.9 displays the interface that can be used to configure the subscribers

of a topic. This interface can be shown by pressing the Show Subscribers button of

the selected topic, or by pressing the Subscribers tab page.

78

Figure 8.9: Topics Subscribers

This interface has the following panes:

1. Topic Selection. First a manager has to select the intended topic. If the Show

Subscribers button depicted in Figure 8.8 was pressed the topic is already

selected, otherwise this can be done by using the combo boxes to select the

proper category and topic.

2. Ordered Subscriber List. This control lists the subscribers of the selected

topic. The order of the subscribers can be changed with the up and down

buttons on the right, and subscribers can be deleted by pressing the delete

button on the keyboard.

3. Updating Subscribers. The combo box on the bottom left corner of Figure

8.9 displays all adapter instances that do not have the None MEP, and it also

displays all the registered workflows. The Add Subscriber button can be used

to add the selected subscriber to the list. Finally, the Update Subscriber but-

ton can be pressed to send the updated list of subscribers to the runtime

engine.

8.4 External Entities

Finally the external entities that are allowed to communicate with the runtime en-

gine should be added using the interface depicted in Figure 8.10.

79

Figure 8.10: Add External Entity Interface

The external entities added before can be managed with the interface depicted

in Figure 8.11.

Figure 8.11: Manage External Entity Interface

80

This interface has the following panes:

1. Filter Criteria. Provides the ability to specify filter criteria to display specific

external entities.

2. Selected External Entity. Displays and provides the ability to update or re-

move a selected external entity.

3. External Entity Grid. Displays the external entities that match the specified

filter criteria.

The Is Active checkbox allows managers to temporarily disable external entities

without having to complectly remove them. If an external entity is set to inactive,

the publish-subscribe engine rejects all its messages, and immediately returns a

publish result with (1) an error indicating that the external entity is inactive and

(2) the specified Inactive Message.

8.5 Logged Messages

Once the runtime engine is configured, the management application can be used

to view the complete flow of messages through the runtime engine. The runtime

engine logs messages using the model that was discussed in Section 5.2, which

provides the three log messages depicted in Figure 8.12 for each message that is

received from a CoC connector.

Runtime Engine

Chamber of
Commerce

Adapter

HTTP Post
Adapter

CoC
Connector

Routing
Workflow

Message
Box

Logged
Message 1
(Incoming
Message)

Logged
Message 2

Logged
Message 3

(Message Box
Message)

Publish Info
Object 1

Publish Info
Object 2

Figure 8.12: Log Locations

1. Logged Message 1. The first logged message is called an incoming message

and is logged when the CoC adapter publishes an internal message to the

publish-subscribe engine.

Incoming messages are the original messages published to a topic, and not

the replies received from subscribers of a topic.

81

2. Logged Message 2. The second message is logged when the routing workflow

returns the enhanced message.

3. Logged Message 3. The last message is called a message box message and it is

logged when the HTTP Post adapter returns the result from the CoC service.

Message box messages are stored in the message box to make it possible to

retrieve them asynchronously.

Using the workflow approach the runtime engine logs two publish info objects

and for each publish info object the request message and the response message is

logged. For the first publish info object the request message is message 1, and the

reply message is message 2.

If a subscriber throws an error, the publish-subscribe engine retries to publish

the message to the subscriber, and for each try, a new reply message and a new

publish info object is logged and displayed.

The logged messages and logged publish info objects can be viewed by using

the interface depicted in Figure 8.13:

Figure 8.13: Logging Interface

This interface has the following panes:

1. Filter Criteria. Provides the ability to specify filter criteria to display specific

logged messages.

82

2. Incoming Messages. Displays the messages that match the specified filter

criteria. This pane only displays incoming messages, unless the filter criteria

specifies a specific id of another message. Unsuccessfully published incoming

messages are marked red.

3. Publish Info Objects. Displays the publish info objects that are logged for

the selected incoming message.

4. Message Box Messages. Displays the message box messages that are logged

for the selected incoming internal message.

8.5.1 Message Content

The same interface can be used to view the complete internal messages in XML

format by pressing an incoming message and clicking the Show Message button, or

by selecting a publish info object, or message box message and pressing the Show

Request Message or Show Response Message buttons.

Figure 8.14 depicts an incoming message in XML format that allows managers

to see the metadata and the actual payload of an internal message.

Figure 8.14: Incoming Message From The CoC Connector

If a message contains an error, like the second incoming message in Figure 8.13

the Show Message buttons can be used to visualize the error.

Figure 8.15 shows the the interface that displays an internal message that was

rejected by the publish-subscribe engine because an invalid topic was specified.

83

Figure 8.15: Unsuccessfully Published Message

8.6 Adapter Approach Configuration

The management applications can also be used to configure the runtime engine

according to the adapter approach using the interfaces discussed before. To do

this, the following steps have to be performed:

1. Registering and instantiating the variation of the CoC connector that declares

a property, which allows managers to specify the mapping between the mes-

sage type of a message and the topic the message has to be published to.

Figure 8.16 depicts the interface that can be used to enter list values such as

the message type to topic mapping.

2. For each message type configured in the mapping a topic has to be created.

3. Each topic must have an instance of the HTTP Post adapter that is configured

with the endpoint address of the intended CoC service.

The other steps are similar to the ones discussed for the configuration of the

runtime engine for the workflow approach and shown in Figures 8.2 to 8.15.

84

Figure 8.16: Register Adapter Approach CoC Adapter

85

Chapter 9

Architecture Evaluation
This chapter evaluates the architecture of the PCC2 through the prototype we dis-

cussed in Chapter 6, and is structured as follows:

Section 9.1 evaluates the case study.

Section 9.2 checks whether the prototype fulfils the requirements.

9.1 Case Evaluation

In the case study we used the prototype to provide two solutions for the CoC in-

tegration scenario. The PCC also provides a solution for the CoC integration sce-

nario, which works as described in Appendix A.2. We compared the PCC2 with the

PCC by analyzing their ability to apply changes to their solutions without down-

time.

This is done by using the evaluation criteria that we have defined based on anal-

ysis of the CoC integration scenario, and from the experience of the PCC designers.

Below the specified evaluation criteria are listed:

C1: Is it possible to modify the endpoint addresses of the CoC services without

downtime?

This is required in case the CoC updates its services and assigns new addresses to

them.

C2: Is it possible to support a new message type that needs to be sent to a new

endpoint address without downtime?

This is needed when the CoC provides support for a new export document that

must be made available to the customers.

C3: Is it possible to modify the XML message format of the messages that need

to be sent to the CoC services without downtime?

If the system is able to transform messages it is possible to transition between dif-

ferent versions without immediately requiring a new version of all clients. This can

86

be used when the CoC modifies an existing export document and releases a new

version of one of its XSD schemas.

C4: Does the system prevent message loss if the system is unexpectedly restarted?

Message loss has to be prevented because customers pay for each message they

send, so it is not acceptable to lose messages if the system is unexpectedly restarted.

C5: Are reply messages still delivered if an external entity is unavailable for sev-

eral hours?

Message loss also has to be prevented when a customer sends a message, and then

encounters technical difficulties that prevent the customer from retrieving the re-

ply message for several hours.

C6: Is it possible to accept a new client that sends messages in a different mes-

sage format without downtime?

This is needed because in the future new clients that possibly use unsupported

message formats, have to be able to communicate with the system.

C7: How much time does it take to process 1000 messages and receive the replies?

This evaluation criterion provides an indication of the processing times of the PCC

and PCC2.

Section uses evaluation criteria C1 to C6 to evaluate the PCC, and Section Section

9.1.2 does the same for the PCC2. We acquired the PCC evaluation results by in-

terviewing the PCC developers, and used our own knowledge to provide the PCC2

evaluation results.

Evaluation criteria C7 is used to evaluate the performance of the PCC and the

PCC2, and is covered in Section 9.1.3.

9.1.1 PCC Evaluation

This section evaluates the PCC using the specified evaluation criteria.

C1: Is it possible to modify the endpoint addresses of the CoC services without

downtime?

Yes, but they have to be modified directly in the database.

87

C2: Is it possible to support a new message type that needs to be sent to a new

endpoint address without downtime?

No, this is not possible without any downtime because the PCC Message Processing

program has to be updated, and for that to happen it has to be stopped, the code

has to be modified and finally the program has to be started again.

C3: Is it possible to modify the XML message format of the messages that need

to be sent to the CoC services without downtime?

No, this also requires the Message Processing program to be updated.

C4: Does the system prevent message loss if it is unexpectedly restarted?

Yes, because the messages are stored in queues that are used to recover messages in

case of an unexpected restart.

C5: Are reply messages still delivered if an external entity is unavailable for sev-

eral hours?

No, if an external entity is unavailable the PCC tries three times to send the reply

messages to the external entity, but if all tries fail the messages are stored in the

dead-letter queue and are not sent again.

C6: Is it possible to accept a new client that sends messages in a different message

format without downtime?

No, this also requires the Message Processing program to be updated which causes

downtime.

9.1.2 PCC2 Evaluation

This section evaluates the PCC2 using the specified evaluation criteria.

C1: Is it possible to modify the endpoint addresses of the CoC services without

downtime?

Yes, this is possible using two approaches:

1. If the workflow approach is used, the routing workflow can be modified, and

once it is saved the new addresses can be used.

88

2. If the adapter approach is used, the properties of the HTTP Post adapter in-

stances can be updated using the management application.

C2: Is it possible to support a new message type that needs to be sent to a new

endpoint address without downtime?

Yes, this is possible using two approaches:

1. If the workflow approach is used, the routing workflow has to be be modified

to include the new message type and endpoint address. Once the workflow is

modified and saved the new message type is accepted.

2. If the adapter approach is used, the following steps have to be taken to accept

the new message type:

• A new topic has to be created for the new message type.

• The created topic requires an instance of the HTTP Post adapter that is

configured with the correct endpoint address as subscriber.

• The CoC adapter’s message type mapping has to be updated to include

the created topic.

C3: Is it possible to modify the XML message format of the messages that need

to be sent to the CoC services without downtime?

Yes, this is possible using two approaches:

1. If the workflow approach is used, the existing workflow can be modified to

perform the transformations, or a second workflow can be developed and

deployed to perform the transformations.

2. In the adapter approach, a new workflow has to be developed and deployed

to perform the transformations.

C4: Does the system prevent message loss if it is unexpectedly restarted?

Yes, because the messages are stored in queues that are used to recover messages in

case of an unexpected restart.

C5: Are reply messages still delivered if an external entity is unavailable for sev-

eral hours?

Yes, they are stored in the message box until an external entity retrieves them.

89

C6: Is it possible to accept a new client that sends messages in a different mes-

sage format without downtime?

Yes, this is possible (using both approaches) by developing a new adapter that can

communicate with the client, and developing a workflow that transforms the mes-

sages to the correct format. The management application can then be used to con-

figure the developed adapter and workflow without downtime of the already oper-

ational adapters and workflows.

9.1.3 Performance Evaluation

This section compares the performance of the PCC and the PCC2, and covers eval-

uation criteria C7, by using a test client that we developed to send a configurable

amount of messages to the PCC and the PCC2, and measure the time it takes to

accept and process them.

The test setup is as follows:

• The test client, the PCC and the PCC2 all run on a machine running Windows

7, 4 GB RAM on a 2.83GHz QuadCore processor.

• The test client sends an export document in XML format of 4534 characters

to the PCC and PCC2.

• The PCC2 is configured according to the workflow approach because this ap-

proach is discussed in detail in Chapter 8, and the performance of the adapter

approach only differs in the order of milliseconds.

• Because the CoC test environment is slow, and can not handle high message

loads we modified the PCC and PCC2 to simulate the calls to the CoC ser-

vices. To do this we modified the PCC Outgoing Frontend (depicted in Figure

2.3), and the PCC2 HTTP Post Adapter (depicted in Figure 7.12) to wait one

second, and then return a XML reply message of 1116 characters to indicate

a submitted export document was accepted.

• All measurements are an average of 10 runs.

The first test only measures how much time it takes to accept messages, which

means accept the export document in XML format via a Web service, store it in

a queue and send a synchronous reply to indicate the message was successfully

accepted. Figure 9.1 shows the results.

90

Figure 9.1: Accept Message Performance

The PCC and the PCC2 both accept messages in linear time, but the PCC2 ac-

cepts messages slightly faster than the PCC because the PCC Incoming Frontend

performs a Web service call to the Incoming Message Handler to store messages in

the queue, while the PCC2 does not require this additional call.

The second test measures how much time it takes to accept and process mes-

sages. We performed the PCC2 tests with 1, 10 and 100 processing threads that

simultaneously process the accepted messages stored in the queue. We did this be-

cause the PCC can only processes messages with a single thread, while the PCC2

can processes them with a configurable amount of threads.

To receive the reply messages from the PCC, the test client hosts a Web service

that is called by the PCC, and to receive the reply messages from the PCC2 the test

client polls the HTTP Post Adapter with an interval of 1 second.

Figure 9.2 shows the results.

Figure 9.2: Process Message Performance

91

The results indicate that the PCC2 processes the accepted messages faster than

the PCC, even if only one processing thread is used. This is because the PCC2 cen-

tralized architecture provides less overhead, and because the PCC2 is implemented

using newer and faster implementation technologies.

How much the PCC2 is faster than the PCC depends on the amount of concur-

rent calls a third-party service can process, the poll interval of the client, and the

time it takes the third-party service to process a single message.

C7: How much time does it take to process 1000 messages and receive the replies?

To answer this evaluation criteria we used the values for the PCC and PCC2 de-

picted in in Figure 9.2. For the PCC2 we used the value that was measured using

using 10 processing threads, because that value is comparable to the time it would

take to send a 1000 messages to the CoC production environment.

This is because, just like our test setup, the CoC production environment allows

the PCC2 to use 10 processing threads, and also takes approximately 1 second to

process a single message.

The only difference is that the poll interval of the PCC2 clients might be a cou-

ple of seconds slower, but this is negligible on the total time when sending a 1000

messages.

The results are:

• PCC2: 129.36s using 10 processing threads.

• PCC: 6019.14s using 1 processing thread.

This means that the PCC2 processes a 1000 messages approximately 46.53 times

faster than the PCC, when communicating with the CoC production environment.

9.1.4 Comparison

This section provides an overview of the evaluation results and compares the PCC

and the PCC2. We have used the following ratings for the comparison:

• The + rating was given if a solution met the criteria, or if a solution provided

a better result than the other solution.

• The - rating was given if a solution did not meet the criteria, or if a solution

provided a weaker result than the other solution.

92

Table 9.1 provides the overview of the evaluation results.

Table 9.1: Case study evaluation results

Evaluation Criteria PCC PCC2

C1: Is it possible to modify the endpoint addresses of the

CoC services without downtime?
+

(Yes)
+

(Yes)

C2: Is it possible to support a new message type that needs

to be sent to a new endpoint address without downtime?
−

(No)
+

(Yes)

C3: Is it possible to modify the XML message format of the

messages that need to be sent to the CoC services without

downtime?

−
(No)

+
(Yes)

C4: Does the system prevent message loss if it is unexpect-

edly restarted?
+

(Yes)
+

(Yes)

C5: Are reply messages still delivered if an external entity

is unavailable for several hours?
−

(No)
+

(Yes)

C6: Is it possible to accept a new client that sends messages

in a different message format without downtime?
−

(No)
+

(Yes)

C7: How much time does it take to process 1000 messages

and receive the replies?
−

(1.67h)
+

(2.16m)

Based on the results we can see that the PCC2 is faster and more flexible to

apply changes to its solutions without downtime than the PCC.

93

9.1.5 Case Conclusions

The case study in Chapter 7 provides a detailed explanation of the PCC2 capa-

bilities by discussing all steps that have to be performed to develop and deploy a

solution for an integration scenario.

It also demonstrates that the PCC2 supports different approaches (adapter and

workflow-based) to provide a solution for the same integration scenario, and we

also compared these approaches.

An advantage of the adapter approach is that only the management applica-

tion is needed for the complete configuration, and it does not require an external

application like Visual Studio to modify the workflow as in the other approach.

An advantage of the workflow approach is that the configuration of the manage-

ment application is simple compared to the configuration of the adapter approach.

This is because only a single topic needs to be created and configured instead of

defining a topic for each message type. However, depending on the configuration

requirements of a specific application this can also be seen as a disadvantage be-

cause it provides less possibilities.

Using the adapter approach, each message of a different message type is pub-

lished to a different topic, which makes it possible to provide a different config-

uration per topic. This allows managers to, for example, temporarily disable the

processing of a single message type, or specify different retry options per message

type.

Whatever approach is chosen, the PCC2 is more efficient and provides devel-

opers the flexibility to modify its solutions to cope with changes that might oc-

cur. This is because it encapsulated the integration scenario specific source code in

reusable adapters and workflows that can be flexibly added and updated at run-

time without requiring modification to the PCC2 source code.

94

9.2 Requirements Evaluation

This section evaluates the prototype based on the requirements that we defined in

Chapter 3.

By using the requirements as criteria for the evaluation we can on the one hand

evaluate the prototype against useful criteria and on the other hand check whether

the requirements of the architecture are met.

9.2.1 Development Level Requirements

This section describes how the Development level requirements are fulfilled.

R1: The system has to provide a mechanism to host and communicate with ad-

ditional endpoints without disrupting the already running applications.

The runtime engine provides an adapter framework that allows developers to de-

velop and deploy reusable adapters that can communicate with an additional end-

point that each can support a different MEP, communication protocol and message

format without disrupting the already running adapters.

The adapter framework also makes it possible to host new endpoints, which

can be done, for example, by developing an adapter that hosts a Web service using

the Service Host Factory, and instantiating multiple instances of this adapter using

the management application. Each instance then hosts a new endpoint that clients

can use to communicate with the runtime engine.

. Section 7.4 provides an explanation of the HTTP Post Adapter, which is an ex-

ample of how the adapter framework can be used to communicate with additional

endpoints without disrupting the already running applications.

. Section 7.3 provides an explanation of the CoC adapter, which is an example of

how the adapter framework can be used to host new endpoints.

R2: The system has to provide a flexible mechanism to perform message process-

ing.

The workflow framework provides a flexible way to develop and deploy reusable

WF4.5 workflows, which can be used to implement custom business logic or per-

form message processing.

These workflows can leverage the full .NET Framework, which allows them to:

• Performing XSD-Schema validations.

95

• Call Web services or databases to find additional information to be add to the

message.

• Apply XSLT transformations to transform the messages.

The workflows are fully updatable at runtime without affecting already running

adapters and workflows.

. Section 6.6 provides an explanation of an example message processing workflow.

9.2.2 Operational Level Requirements

This section describes how the Operational level requirements are fulfilled.

R3: The system has to provide a mechanism to support asynchronous communi-

cation without external entities having to open inbound ports in their firewalls.

The message box extension allows managers to configure the publish-subscribe en-

gine to store the processing results of a message in the message box, which allows

adapter developers to asynchronously make these results available to external en-

tities without requiring them to open any inbound ports in their firewalls.

The processing results can be the reply message of a subscriber or an error mes-

sage indicating that processing errors occurred.

. Section 5.6 describes the message box extension.

. Section 7.3 provides an explanation of the CoC adapter, that uses the message box

extension.

9.2.3 Management Level Requirements

This section describes how the Management level requirements are fulfilled.

R4: The system has to provide a flexible mechanism to perform message routing.

The publish-subscribe engine allows managers to perform itinerary-based routing

by using the management application to specify a message itinerary per topic that

is used to publish messages to subscribers.

It is also possible to perform content-based routing by using properties of an

adapter or by using a routing workflow that can be deployed in the workflow

framework.

96

As the case study has shown, both approaches are fully updatable at runtime

without affecting already running adapters and workflows.

. Chapter 7 demonstrates how the PCC2 supports both routing mechanisms.

R5: The system must only accept incoming messages from predefined external

entities.

The publish-subscribe engine only accepts messages from external entities that

have a valid X.509 certificate and have been registered using the management ap-

plication.

. Section 8.4 explains how the management application can be used to manage

known external entities.

R6: The system has to be able to temporarily reject incoming messages.

A manager can use the management application to set the AcceptMessages prop-

erty of a topic to false, which causes the publish-subscribe engine to reject all mes-

sages that are published to that topic.

. Section 5.1 describes the AcceptMessages property.

. Section 8.7 depicts the interface of the management application that can be used

to set the AcceptMessages property.

R7: The system has to provide a configurable retry mechanism.

The publish-subscribe engine provides a configurable retry mechanism that can be

configured using the management application.

. Section 5.3 describes the configurable retry mechanism.

. Section 8.7 depicts the interface of the management application that can be used

to configure the retry mechanism.

R8: The system has to be able to display detailed log information.

The runtime engine provides detailed log information about all sent and received

messages that allows managers to use the management application to view the

complete flow of messages through the runtime engine.

This view includes:

• The name of the external entity that sent a message.

• At what time a message was sent to a recipient and the reply that was received

for the message.

97

• Which errors, if any, occurred during the processing of a message.

• The final reply message that was generated by the system.

. Section 5.2 describes the the model that is used to provide the detailed log infor-

mation.

. Section 8.5 describes the interface that can be used to view the detailed log infor-

mation.

OR10: The system has to provide support for a fallback address for external

entities.

The retry mechanism of the publish-subscribe engine has the ability to publish a

message in fail over mode, which sets the UseFailover metadata property of the

internal message to true before a failed message is re-published.

The subscribers can then take appropriate actions, such as, deliver the message

to a fail over endpoint.

. Section 5.3 describes how this fallback mechanism can be used.

. Section 8.7 depicts the interface of the management application that can be used

to enable this mechanism.

OR15: The system has to collect usage information.

Managers can view usage information of external entities by using the management

application to filter all logged messages on the name of a specific external entity.

. Section 5.2 describes the the model that is used to provide the usage information.

. Section 8.5 describes the interface that can be used to view and filter the logged

messages to view the usage information.

OR16: The system must be able to temporarily stop processing messages.

The ProcessMessages property of a topic allows managers to temporarily disable

message processing of a specific topic. This property indicates if the publish-

subscribe engine has to process messages that have been stored in the queue. If

this option is set to false, the publish-subscribe engine still accepts incoming mes-

sages and stores them in the queue, but they are not processed until this option is

enabled.

. Section 5.1 describes the ProcessMessages property.

. Section 8.7 depicts the interface of the management application that can be used

to set the ProcessMessages property.

98

OR17: The system must be able to temporarily block external entities.

The IsActive property of an external entity allows managers to temporarily disable

external entities without having to complectly remove them. If an external entity

is set to inactive, the publish-subscribe engine rejects all its messages and immedi-

ately returns a publish result that includes: (1) an error indicating that the external

entity is inactive, (2) an description that was specified by a manager.

. Section 8.4 depicts the interface of the management application that can be used

to block external entities.

99

9.2.4 Requirements Conclusions

The requirements evaluation results show that the requirements of the project were

met because the PCC2 fulfils all mandatory and four optional requirements.

Based on the results we concluded that the PCC2 satisfies the needs of the three

identified stakeholder groups, i.e. managers, developers and external as follows:

• Managers.

The PCC2 provides a management application that increases the productivity

of the managers by allowing multiple managers to simultaneously configure

the PCC2 from a remote location without having to redeploy the PCC2. Trou-

bleshooting problems also takes a lot less time because the management ap-

plication provides detailed log information about all sent and received mes-

sages.

• Developers

The PCC2 provides the developers with a Service Host Factory, and a work-

flow and adapter framework, that increase their productivity by allowing

them to easily develop and deploy reusable components to communicate

with additional endpoints without downtime. In addition, the PCC2 con-

figurable publish-subscribe engine decouples the developed components, al-

lowing them to effectively exchange messages by simply publishing messages

onto the bus, independent of the type or number of consumers. This also in-

creases the developers’ productivity because it frees them from spending time

on defining the communication between the developed components, and al-

lows them to concentrate on the specific business logic associated with ma-

nipulating the message content.

• External entities The PCC2 allows external entities to easily communicate

with the PCC2 without having to modify their system by allowing the de-

velopers to easily develop components that allow any third-party system to

communicate with the PCC2.

100

Chapter 10

Final Remarks
This chapter identifies and briefly discusses some research related to what we have

done, presents the contributions of our work and draws our main conclusions. Fur-

thermore, it discusses which topics require further investigations.

This chapter is structured as follows:

Section 10.1 elaborates on related work.

Section 10.2 presents the conclusions and the contributions of our work.

Section 10.3 discusses how we improved the PCC.

Section 10.4 discusses future work.

10.1 Related Work

At the time of writing the research proposed by JiZhe [28] is the only research we

found that also propose a ESB architecture based on Microsoft .NET framework.

Their main contributions are a high level description of ESBs and a brief discussion

on how they used WCF for parts of their ESB, but their research does not go into

any details about their architecture and implementation.

However, based on their high level description we can conclude that their ESB

is a lot less extensive and flexible than ours, because it does not provide a flexible

management application and it does not provide functionality to host additional

endpoints without having to redeploy their ESB. They also use WCF to communi-

cate with Web services, but they do not describe how their ESB allows these Web

services to communicate with each other, which is one of the most important prin-

ciples of an ESB system.

Their research provides ideas on how to implement a custom ESB architecture

using the .NET framework, but our research actually discusses an architecture and

implementation for a flexible custom ESB architecture in detail.

101

The research proposed by Ji-chen [29] focuses on the ESB’s concept, data’s life-

cycle and provides an overview of what tasks an ESB should perform, but it does

not provide an architecture, like ours that describes how an ESB can be designed

to actually perform these tasks.

The research proposed by Roshen [30] describes that when using currently

available ESBs, each application must connect to the ESB through a port of a spe-

cific type, which is determined by the communication protocol and message type

used by an application.

Their research proposes a new USB-like Universal Port, which can be employed

by an ESB to allow any application to connect to an ESB, irrespective of the com-

munication protocol or message format type used by an application.

While we think this is an very interesting idea, we did not use this approach

because their research is still only theoretical, and as far as we know has not yet

been used in any production ESB system.

10.2 General Conclusions

Commercially available ESBs can be a suitable choice for large companies, but it

is possible that such a solution is inflexible, too expensive or too complex, and can

introduce too much overhead for smaller companies.

To provide a solution for this problem we have identified the following two

objectives for our research in Section 1.2:

(1) Identify the architectural principles for developing ESB systems with stringent

flexibility and quality requirements.

(2) Define a custom ESB architecture, and evaluate this architecture by means of a

prototype.

Using CompanyX and the PCC allowed us to analyze an ESB in a production

environment to identify its limitations, which we used to capture the requirements

of the PCC2.

We analyzed the architectures and documentation of the existing systems to

identify the architectural principles for developing ESB systems. We then used

these principles together with the PCC limitations to define the flexible custom

ESB architecture of the PCC2.

We concluded, based on our analysis of the existing ESB systems that most ESB

102

systems are Java-based, however our implementation shows that the .NET frame-

work also provides technologies that facilitate the implantation of ESB systems.

We identified Windows Workflow Foundation 4.5 (WF4.5) as an interesting

new technology for the development of ESB systems because it significantly in-

creased the flexibility of the PCC2, and also simplified its development. This is be-

cause WF4.5 provides an extensive visual designer for the graphical construction of

workflows that perform tasks such as message processing and service composition.

At the time of writing the PCC2 is the only ESB that we could find that already

makes use of WF4.5, because it is a new technology that was released during the

timeframe of our project. We are convinced that WF4.5 will be used by future ESB

systems, because it looks very promising.

To evaluate the PCC2, we used the requirements of the PCC2 as evaluation

criteria, and performed a case study.

The requirements evaluation results showed that the PCC2 fulfils all manda-

tory requirements, and satisfies the needs of the identified stakeholders by address-

ing the PCC limitations.

The case study evaluation results showed that the PCC2 is faster, and more flex-

ible than the PCC, because it processes messages more efficiently, and facilitates the

development of reusable adapters an workflows that can be deployed, configured

and updated at runtime without downtime.

We proposed in this research a flexible custom ESB system, and demonstrated,

using CompanyX as an example, that our flexible custom ESB reduces the time and

cost of integrating third-party services.

Our work also shows that developing a custom ESB solution can be a suitable

choice for companies for which the commercially available ESBs are not a suitable

solution. The reason for this is that the PCC2 provides CompanyX with a solution

that gives them the functionality they need, while it requires less resources. In

addition, it is less complex and the development cost is less than the purchase

price of the commercially usable ESBs that we researched.

We are of the meaning that the flexible architecture of the PCC2 can provide a

solution for many more companies for which the commercial available ESB are not

a suitable choice.

103

10.3 PCC Update

Besides our work on the PCC2, we have also worked on improving the PCC be-

cause in the time frame of our project the PCC message load increased significantly,

which caused problems that prevented the PCC from operating correctly.

We identified the cause of these problems and determined that in order to solve

them the PCC and its clients required an update.

Updating the PCC clients costs a lot of time and money because they run on the

customers’ computers, and installing and updating them has to be done by Compa-

nyX’s consultants. This is due to often occurring problems with the configuration

of the customers’ firewalls.

As part of the update we modified the PCC to provide a simplified version of

the message box mechanism that we have designed for the PCC2. This mechanism

prevents message loss and provides support for asynchronous messaging without

customers having to open inbound ports in their firewalls.

Adding this functionality allowed us to significantly simplify the transition

from PCC to PCC2 by preventing another update of the clients, and allowed us

to already evaluate part of our architecture in realistic situations.

The updated PCC and its clients have been tested and approved by CompanyX’s

test department, and are currently being used by more than a hundred customers.

CompanyX’s service desk employees confirmed that the update significantly

improved the PCC performance, and solved the critical problems.

CompanyX’s consultants reported that because the updated clients do not re-

quire any open inbound ports in the customer’s firewalls the installation went

smootly, which saved a lot of time and money because the updated clients can

now be installed by customers instead of consultants.

10.4 Future Work

The architecture we provided leaves room for further investigation. In this section

we describe the most important issues that can be tackled in future work:

USB-like Universal Port Analysis. It would be interesting to extend our adapter

framework to provide an Universal Port type that delegates the actual communi-

cation to the correct adapter, and research if this approach is more beneficial than

the approach we are currently using.

104

BPEL Import. Some companies use BPEL, which is a Business Process Execution

Language, for the specification of business processes with Web services. To allow

these companies to easily migrate their business processes to the PCC2, further

research is required.

A starting point could be a tool called BPEL for WF [31], which is provided by

Microsoft and provides import and export features between BPEL and WF. Further

research should also determine how this functionality can be integrated into the

PCC2 architecture.

Message Mediation. Our adapter framework provides security and communica-

tion protocol mediation to allow the workflows to interact with all endpoints by

only using our internal message format. However, the developers still have to write

the required code to describe the transformation that needs to be performed on the

content of these messages.

Further research can improve the PCC2 by defining a mechanism to perform

this transformation using a graphical user interface without having to define this

transformation using code. Our workflow framework perfectly lends itself for such

a mechanism, because WF4 makes it possible to develop custom activities that can

provide the interface to do this. An example of a simple version of such a mecha-

nism can be found in [32].

To perfectly integrate this mechanism, the PCC2 management application can

be extended to allow managers to create, modify, and monitor workflows. This is

possible because the Windows Workflow Designer can be rehosted in environments

outside of Visual Studio 2012. This makes it possible to use the management ap-

plication to develop a new transformation workflow using the custom actives to

perform a transformation without any external tools, and without having to write

any code.

105

Chapter A

Appendix

A.1 Optional Requirements

This section describes the requirements that we have specified based on the inter-

views with the identified stakeholders.

OR9: The system must only accept predefined message types from authorized ex-

ternal entities.

� Stakeholders: Developers.

. W7: No authorization for different message types.

It must be possible to specify a list of registered message types that an registered

external entity is allowed to receive and/or send.

OR10: The system has to provide support for a fallback address for external en-

tities.

� Stakeholders: Developers.

The fallback address has to be used when the system is unable to send the message

to the main address after a specified number of times.

OR11: The system has to be able to act as an intermediary for message traffic be-

tween third-party services and internal services to provide a centralized location

for logging, security, management and monitoring.

� Stakeholders: Developers.

The system has to be able to dynamically host an endpoint with the same contract

as a specific internal service. It should then log the incoming messages, check if the

sender is authorized and authenticated to use this service based on his certificate

and finally forward the message to the actual internal service.

OR12: The system has to be able to prioritize a single message.

� Stakeholders: Service desk employees.

The system must make it possible to assign a high priority to a single message so

106

that it will be processed immediately after the message which is being processed.

OR13: The system has to log the processing times of messages.

� Stakeholders: Developers.

The system has to log the time it takes to process a message with a specific message

type so the average processing times can be calculated and be used to inform exter-

nal entities about the processing time.

R14: The system has to provide the ability for message monitoring.

� Stakeholders: Managers.

It must be possible to monitor incoming and outgoing messages by using the man-

agement application.

OR15: The system has to collect usage information.

� Stakeholders: Managers.

It must be possible to view usage information that allows external entities to be

billed for their usage of the system.

OR16: The system must be able to temporarily stop processing messages.

� Stakeholders: Service desk employees.

It must be possible to temporarily stop processing messages. The system must still

accept incoming messages but they have to be buffered until a manager indicates

that the system must process the messages again.

OR17: The system must be able to temporarily block external entities.

� Stakeholders: Managers.

It must be possible to temporarily block external entities so that the system will

not accept any messages from that external entity.

OR18: The system must be able to process messages based on the priority of the

message type.

� Stakeholders: Managers, External Entities.

It must be possible to prioritize the supported message types which allows the sys-

tem to process incoming messages based on this priority.

107

OR19: The system should be able to process messages based on the priority of the

external entity.

� Stakeholders: Managers, External Entities..

It must be possible to prioritize external entities which allow the system to process

incoming messages based on the priority of the external entities.

OR20: The system must send problem alerts.

� Stakeholders: Managers.

The system should send email alerts when a third party service has technical diffi-

culties.

OR21: The system has to be able to generate reports based on the specific content

of messages.

� Stakeholders: Managers.

It must be possible to generate and view reports based on specific content of a cer-

tain message type.

108

A.2 Message Flow

Below a brief description is given on how the PCC processes messages that are

received from a client application.

Incoming
 Frontend

Incoming
Message
Handler

Outgoing
Message
Handler

Outgoing
 Frontend

Client

PCC

A component depicted with this icon uses the system’s database.
LEGEND

A B Component A initiates a two-way connection with component B.

Message
Logger

Outbox
Queue

Third-Party
Service

Inbox
Queue

Message
Accoutning

Queue

Message
Queue

Message
Processing

Dead-Letter
Queue

Figure A.1: PCC Present Architecture

• A client application sends a message to the Incoming SOAP Frontend.

• The Incoming SOAP Frontend keeps the connection with the client applica-

tion open and forwards the message to the Incoming Message Handler.

• The Incoming Message Handler stores the message in the inbox of the Mes-

sage Queue and sends the message to the Message Accounting service which

logs the message to the database.

• The Incoming Message Handler then notifies the Incoming SOAP Frontend

that the message was successfully stored.

• The Incoming SOAP Frontend, which still has an open connection with the

client application, then sends a synchronous reply back to the client applica-

tion to indicate that the message was accepted by the system.

• The Message Processing service detects that there is a new message in the

inbox of the Message Queue, it then processes the message, adds the destina-

tion address to the message and stores the result in the outbox of the Message

Queue.

• The Outgoing Message Handler detects that there is a new message in the

109

outbox of the Message Queue and forwards it to the Outgoing SOAP Fron-

tend.

• Based on the added destination address the Outgoing SOAP Frontend for-

wards the message to the correct third-party service, and synchronously re-

ceives a reply message which it forwards to the Incoming Message Handler.

• The Incoming Message Handler then stores the message in the inbox of the

Message Queue and notifies the Outgoing SOAP Frontend that the message

was successfully stored.

• The Outgoing SOAP Frontend then notifies the Outgoing Message Handler

that the message was successfully processed so it will delete the message from

the Message Queue.

• Finally the Message Processing service detects the reply message from the

third-party service, processes it, and stores the result in the Message Queue’s

outbox. The resulting message is then sent to the client application via the

Outgoing Message Handler and the Outgoing SOAP Frontend like the origi-

nal message.

110

Bibliography
[1] David A. Chappell, OReilly - Enterprise Service Bus. O’Reilly, 2004.

[2] C. de Hullu, “Evaluating .net-based enterprise service bus solutions,” 2012.

[3] M. A. Akif, “Microsoft’s Enterprise Service Bus (ESB) Strategy,” 2006.

[4] D. Hatzidakis, “To ESB or Not to ESB? ESB - An "Architectural Pattern" ,” October, 2006.

[5] R. Gupta, “Enterprise service bus capabilities comparison,” Business, no. April 2008, 2008.

[6] J. Enterprise and S. Bus, “Open Source Enterprise Service Bus (ESB) Evaluation Vendors on

their ESBs,” 2009.

[7] A. Rahien, “Rhino service bus,” December 2008. Online: http://ayende.com/blog/3752/rhino-

service-bus.

[8] “Phoenix service bus.” Online: http://pservicebus.codeplex.com/.

[9] “Mass transit.” Online: http://code.google.com/p/masstransit/.

[10] “Simple service bus.” Online: http://simpleservicebus.codeplex.com/.

[11] “Shuttle esb.” Online: http://shuttle.codeplex.com/releases/view/61788.

[12] “Nservicebus.” Online: http://nservicebus.com/.

[13] “Esb.net.” Online: http://keystrokeesbnet.codeplex.com/.

[14] “Nginn.messagebus.” Online: http://code.google.com/p/nginn-messagebus/.

[15] “Neuron esb documentation.” Online: http://products.neudesic.com/downloadpage.

[16] Neudesic, “Neuron esb: An enterprise service bus for the microsoft platform part 1,” 2010.

[17] Neudesic, “Neuron esb: An enterprise service bus for the microsoft platform part 2,” 2010.

[18] D. Chappell, “Understanding BizTalk Server 2006,” no. August 2005, 2006.

[19] “Biztalk server documentation.” Online: http://www.microsoft.com/biztalk/en/us/product-

documentation.aspx.

[20] M. Corporation, “Microsoft biztalk server 2010 technical overview,”

[21] “Biztalk server adapter page.” Online: http://msdn.microsoft.com/en-us/library/

aa546748(v=BTS.70).aspx.

[22] D. Chappell, “Introducing Windows Communication Foundation,” Framework, no. January,

2010.

[23] C. . A. David Chappell, “Introducing windows communication foundation in .net framework

4,” tech. rep., Copyright Microsoft Corporation, March 2010. Online: http://msdn.microsoft.

com/library/ee958158.aspx.

[24] D. Chappell, “The workflow way: Understanding windows workflow foundation,” 2009.

111

http://ayende.com/blog/3752/rhino-service-bus
http://ayende.com/blog/3752/rhino-service-bus
http://pservicebus.codeplex.com/
http://code.google.com/p/masstransit/
http://simpleservicebus.codeplex.com/
http://shuttle.codeplex.com/releases/view/61788
http://nservicebus.com/
http://keystrokeesbnet.codeplex.com/
http://code.google.com/p/nginn-messagebus/
http://products.neudesic.com/downloadpage
http://www.microsoft.com/biztalk/en/us/product-documentation.aspx
http://www.microsoft.com/biztalk/en/us/product-documentation.aspx
http://msdn.microsoft.com/en-us/library/aa546748(v=BTS.70).aspx
http://msdn.microsoft.com/en-us/library/aa546748(v=BTS.70).aspx
http://msdn.microsoft.com/library/ee958158.aspx
http://msdn.microsoft.com/library/ee958158.aspx

[25] “Windows forms.” Online: http://msdn.microsoft.com/en-us/library/dd30h2yb.aspx.

[26] M. Fowler, Patterns of Enterprise Application Architecture. Addison-Wesley Professional, 2002.

[27] “Managed extensibility framework.” Online: http://msdn.microsoft.com/en-us/library/

dd460648.aspx.

[28] Y. Y. Li JiZhe, “Research & implementation of lightweight esb with microsoft .net,” International

Conference on Frontier of Computer Science and Technology, 2009.

[29] G. M. JIANG Ji-chen, “Enterprise service bus and an open source implementation,”

[30] W. Roshen, “Enterprise service bus with usb-like universal ports,” 2011 Ninth IEEE European

Conference on Web Services, 2011.

[31] “Bpel for windows workflow foundation.”

[32] R. Kiss, “Wf4 custom activities for message mediation,” Dec. 2012.

112

http://msdn.microsoft.com/en-us/library/dd30h2yb.aspx
http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://msdn.microsoft.com/en-us/library/dd460648.aspx

	Introduction
	Motivation
	Objectives
	Approach
	Thesis Outline

	PCC Architecture
	Enterprise Service Bus
	PCC High-Level Description
	PCC Programs
	Messaging Infrastructure Limitations
	Security Limitations
	Architectural Limitations

	Requirements
	Stakeholders
	Approach
	Mandatory Requirements

	High-Level Design
	Architectural Principles
	High-level Components
	Runtime Engine
	Publish-Subscribe Engine
	Adapter Framework
	Workflow Framework
	Security

	Architectural Design
	Topic Domain Model
	Message Logging
	Retry Mechanism
	Request-Response Messaging
	Chaining
	Message Box
	Queues
	Security
	Example Message Flow

	Prototype Implementation
	Implementation Technologies
	Service Host Factory
	Management Application
	Adapter Framework
	Workflow Framework
	Limitations

	Case Implementation
	Integration Scenario
	Overview
	Chamber of Commerce Connector Adapter
	HTTP Post Adapter
	Route Workflow
	Message Flow

	Case Configuration
	Adapters
	Workflows
	Topics
	External Entities
	Logged Messages
	Adapter Approach Configuration

	Architecture Evaluation
	Case Evaluation
	Requirements Evaluation

	Final Remarks
	Related Work
	General Conclusions
	PCC Update
	Future Work

	Appendix
	Optional Requirements
	Message Flow

	Bibliography

